Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2421-2428.DOI: 10.16085/j.issn.1000-6613.2024-1846

• Synthetic biomanufacturing • Previous Articles    

Renewable source utilization and biomanufacturing based on halophilic chassis

WANG Wanze1(), DING Jun1, YAN Xu1, CHEN Guoqiang1,2()   

  1. 1.School of Life Sciences, Tsinghua University, Beijing 100084, China
    2.Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2024-11-11 Revised:2025-02-06 Online:2025-05-20 Published:2025-05-25
  • Contact: CHEN Guoqiang

基于嗜盐底盘的可再生资源利用与生物制造

王婉泽1(), 丁军1, 闫煦1, 陈国强1,2()   

  1. 1.清华大学生命科学学院,北京 100084
    2.清华大学化工系,北京 100084
  • 通讯作者: 陈国强
  • 作者简介:王婉泽(1999—),女, 博士研究生, 研究方向为代谢工程改造。E-mail:wang-wz22@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金(32130001)

Abstract:

Enhancing the sustainability of production processes under the leadership of the “carbon neutrality” initiative, there is a growing shift from fossil fuel-dependent methods to biomanufacturing practices that are both sustainable and environmentally friendly. Halophilic microorganisms, which flourish in high-salt environments, are emerging as key chassis in biomanufacturing due to their distinctive benefits. Notably, Halomonas bluephagenesis (H. bluephagenesis) stands out for its ability to synthesize a range of biodegradable bioplastics, specifically polyhydroxyalkanoates (PHA), through open and continuous fermentation processes. This microorganism’s capacity to convert low-cost substrates or waste materials into high-value products significantly bolsters the viability of sustainable biomanufacturing. Advancements in genetic engineering and metabolic pathway optimization, along with morphological engineering tailored for H. bluephagenesis, have led to substantial reductions in the production costs of a diverse array of polymers, small molecules, amino acids, and proteins. This paper further discusses the strategic utilization of cost-effective carbon sources, such as starch, cellulose, acetic acid, and food waste, as substrates for halophilic microorganisms to produce valuable compounds. Finally, it also examines the potential and prospective applications of H. bluephagenesis in harnessing one-carbon compounds for biomanufacturing, which is crucial for the development of next-generation industrial biotechnology and the realization of carbon neutrality goals.

Key words: halophile, next generation industrial biotechnology (NGIB), polyhydroxyalkanoates, renewable source, carbon neutrality

摘要:

在“碳中和”目标的驱动下,以化石燃料为原料的传统生产模式正在逐渐被绿色、可持续发展的生物制造所替代。嗜盐微生物是一类需要在高盐环境中才能正常生长的微生物,因其适应极端条件的特性和在资源化利用中的潜力,近年来受到生物制造行业的广泛关注和研究。本文综述了盐单胞菌在开放式连续发酵的条件下合成可降解的生物基塑料——聚羟基脂肪酸酯(PHA)的研究进展,同时探讨了其应用廉价底物或废弃物生产多种高附加值产品的可行性,为生物制造业的可持续发展提供了有利支持。通过开发基因调控元件、优化基因编辑技术以及改造代谢通路和形态学特性,盐单胞菌作为底盘细胞低成本生产多种聚合物、小分子化合物、氨基酸和蛋白质的应用潜力进一步提升。在廉价碳源的资源化利用方面,本文介绍了嗜盐微生物利用淀粉、纤维素、乙酸、餐厨废弃物等为底物生长和生产的相关研究。最后,展望了利用盐单胞菌进行一碳资源高值化应用的潜力和前景,以推动下一代工业生物技术发展和“碳中和”目标的实现。

关键词: 嗜盐微生物, 下一代工业生物技术, 聚羟基脂肪酸酯, 可再生能源, 碳中和

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd