Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4996-5012.DOI: 10.16085/j.issn.1000-6613.2023-1495
• Materials science and technology • Previous Articles
GENG Xiumei(), ZHANG Feng, ZHANG Xiang, SHAN Meixia(), ZHANG Yatao()
Received:
2023-08-28
Revised:
2023-11-16
Online:
2024-09-30
Published:
2024-09-15
Contact:
SHAN Meixia, ZHANG Yatao
通讯作者:
单美霞,张亚涛
作者简介:
耿秀梅(1998—),女,硕士研究生,研究方向为气体分离膜。E-mail:gxm230230@163.com。
基金资助:
CLC Number:
GENG Xiumei, ZHANG Feng, ZHANG Xiang, SHAN Meixia, ZHANG Yatao. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012.
耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1495
化学稳定性 | UiO-66 | ZIF-8 | MIL-125(Ti) | MOF-5 |
---|---|---|---|---|
水稳定性 | 强 | 强 | 弱 | 弱 |
酸稳定性 | 强 | 弱 | 强 | 弱 |
碱稳定性 | 强 | 强 | 弱 | 弱 |
化学稳定性 | UiO-66 | ZIF-8 | MIL-125(Ti) | MOF-5 |
---|---|---|---|---|
水稳定性 | 强 | 强 | 弱 | 弱 |
酸稳定性 | 强 | 弱 | 强 | 弱 |
碱稳定性 | 强 | 强 | 弱 | 弱 |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 沸石填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | SAPO-34 | 50 | 338 | 6.3 | 21 | 54 | 16 | 308 | 7 | — | [ | |||
4Azeolite | 10 | 97 | 1.8 | 3.7 | 54 | 26.5 | 298 | 5 | — | [ | ||||
MFI-ns | 5 | 159.1 | — | 5.8 | — | 27.4 | 298 | 2 | — | [ | ||||
ZeoliteY | 2 | 260100 | 8670 | — | 30 | — | 330 | 1 | 24 | [ | ||||
NaX | 1.5 | 187.76 | 0.65 | 3.27 | 288.86 | 57.41 | 298 | 6 | 50 | [ |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 沸石填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | SAPO-34 | 50 | 338 | 6.3 | 21 | 54 | 16 | 308 | 7 | — | [ | |||
4Azeolite | 10 | 97 | 1.8 | 3.7 | 54 | 26.5 | 298 | 5 | — | [ | ||||
MFI-ns | 5 | 159.1 | — | 5.8 | — | 27.4 | 298 | 2 | — | [ | ||||
ZeoliteY | 2 | 260100 | 8670 | — | 30 | — | 330 | 1 | 24 | [ | ||||
NaX | 1.5 | 187.76 | 0.65 | 3.27 | 288.86 | 57.41 | 298 | 6 | 50 | [ |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | MOFs填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | ZIF-8 | 20 | 290 | 9.4 | 19.2 | 41.1 | 15.1 | 298 | 3 | 360 | [ | |||
MWCNTs@ZIF-8 | 8 | 186.3 | 3.04 | — | 61.3 | — | 308 | 5 | 168 | [ | ||||
ZIF-300 | 30 | 83 | 0.99 | — | 84 | — | 293 | 4 | 100 | [ | ||||
UiO-66-NH2 | — | 130 | 1.81 | — | 72 | — | 298 | 3 | 100 (相对湿度=85%) | [ | ||||
UiO-66@HNT | 20 | 119 | 1.56 | — | 76 | — | 298 | 5 | 168 | [ | ||||
ns-Ni(im)2 | 2 | 123.3 | — | 3.4 | — | 36.5 | 298 | 2 | 120 | [ | ||||
Cu-BTC-SC | 15 | 49098 | 895.9 | 1227 | 54.8 | 40 | 298 | 1.5 | 100(加湿) | [ | ||||
Gly@Cu-BTC | 5 | 178.2 | — | 5.57 | — | 32 | 298 | 2 | 100(加湿) | [ | ||||
CFA-1 | 3 | 869 | 9.8 | — | 88.6 | — | 303 | 1 | 180 | [ |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | MOFs填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | ZIF-8 | 20 | 290 | 9.4 | 19.2 | 41.1 | 15.1 | 298 | 3 | 360 | [ | |||
MWCNTs@ZIF-8 | 8 | 186.3 | 3.04 | — | 61.3 | — | 308 | 5 | 168 | [ | ||||
ZIF-300 | 30 | 83 | 0.99 | — | 84 | — | 293 | 4 | 100 | [ | ||||
UiO-66-NH2 | — | 130 | 1.81 | — | 72 | — | 298 | 3 | 100 (相对湿度=85%) | [ | ||||
UiO-66@HNT | 20 | 119 | 1.56 | — | 76 | — | 298 | 5 | 168 | [ | ||||
ns-Ni(im)2 | 2 | 123.3 | — | 3.4 | — | 36.5 | 298 | 2 | 120 | [ | ||||
Cu-BTC-SC | 15 | 49098 | 895.9 | 1227 | 54.8 | 40 | 298 | 1.5 | 100(加湿) | [ | ||||
Gly@Cu-BTC | 5 | 178.2 | — | 5.57 | — | 32 | 298 | 2 | 100(加湿) | [ | ||||
CFA-1 | 3 | 869 | 9.8 | — | 88.6 | — | 303 | 1 | 180 | [ |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | COF填料 | 负载量(质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | COF-5 | 0.4 | 493 | 10 | — | 49.3 | — | 303 | 1 | 120 | [ | |||
TpPa-nc | 1 | 20.3 | 0.3 | — | 72 | — | 298 | 3 | 120 | [ | ||||
COF-300 | 7 | 1268.4 | — | 41.3 | — | 30.7 | 303 | 2 | 60d(8.4%水) | [ | ||||
IL@COF-300 | 1601 | — | 40.5 | — | 39.5 | 60d(7.1%水) | ||||||||
PEG200@COF | 3 | 944 | — | 28.6 | — | 33 | 303 | 1 | 144 | [ | ||||
PEG350@COF | 1 | 1044 | — | 43.5 | — | 24 | ||||||||
mCOF | 0.8 | 477.2 | — | 15 | — | 31.9 | 303 | 2 | 168(加湿) | [ | ||||
CXM | 398.9 | — | 9 | — | 44.2 |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | COF填料 | 负载量(质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | COF-5 | 0.4 | 493 | 10 | — | 49.3 | — | 303 | 1 | 120 | [ | |||
TpPa-nc | 1 | 20.3 | 0.3 | — | 72 | — | 298 | 3 | 120 | [ | ||||
COF-300 | 7 | 1268.4 | — | 41.3 | — | 30.7 | 303 | 2 | 60d(8.4%水) | [ | ||||
IL@COF-300 | 1601 | — | 40.5 | — | 39.5 | 60d(7.1%水) | ||||||||
PEG200@COF | 3 | 944 | — | 28.6 | — | 33 | 303 | 1 | 144 | [ | ||||
PEG350@COF | 1 | 1044 | — | 43.5 | — | 24 | ||||||||
mCOF | 0.8 | 477.2 | — | 15 | — | 31.9 | 303 | 2 | 168(加湿) | [ | ||||
CXM | 398.9 | — | 9 | — | 44.2 |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 其他填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | CC-PEINT | 8 | 710 | — | 11.83 | — | 60 | 298 | 2 | 120 | [ | |||
NPC | 5 | 553 | 9.8 | — | 56.4 | — | 298 | 1 | 360 | [ | ||||
ImGO | 0.8 | 64 | 0.7 | 2.55 | 90.3 | 25.1 | 298 | 4 | 50 | [ | ||||
CMC@MXene | 2 | 1823.5 | 45.47 | 45.1 | 40.1 | 40.4 | 298 | 1 | 60 | [ |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 其他填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | CC-PEINT | 8 | 710 | — | 11.83 | — | 60 | 298 | 2 | 120 | [ | |||
NPC | 5 | 553 | 9.8 | — | 56.4 | — | 298 | 1 | 360 | [ | ||||
ImGO | 0.8 | 64 | 0.7 | 2.55 | 90.3 | 25.1 | 298 | 4 | 50 | [ | ||||
CMC@MXene | 2 | 1823.5 | 45.47 | 45.1 | 40.1 | 40.4 | 298 | 1 | 60 | [ |
63 | WALLER Peter J, LYLE Steven J, OSBORN POPP Thomas M, et al. Chemical conversion of linkages in covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15519-15522. |
64 | URIBE-ROMO Fernando J, DOONAN Christian J, FURUKAWA Hiroyasu, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. Journal of the American Chemical Society, 2011, 133(30): 11478-11481. |
65 | LEE Jaewon, HONG Seokyoung, CHO Hyungtae, et al. Machine learning-based energy optimization for on-site SMR hydrogen production[J]. Energy Conversion and Management, 2021, 244: 114438. |
66 | LU H T, KANEHASHI S, SCHOLES C A, et al. The potential for use of cellulose triacetate membranes in post combustion capture[J]. International Journal of Greenhouse Gas Control, 2016, 55: 97-104. |
67 | ANANTHARAMAN Rahul, BOLLAND Olav, BOOTH Nick, et al. European best practice guidelines for assessment of CO2 capture technologies[R]. CAESAR Consortium, 2011. |
68 | YAVE Wilfredo, Anja CAR, PEINEMANN Klaus-Viktor. Nanostructured membrane material designed for carbon dioxide separation[J]. Journal of Membrane Science, 2010, 350(1/2): 124-129. |
69 | POTRECK Jens, NIJMEIJER Kitty, KOSINSKI Thomas, et al. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074[J]. Journal of Membrane Science, 2009, 338(1/2): 11-16. |
70 | WU Hong, LI Xueqin, LI Yifan, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of Membrane Science, 2014, 465: 78-90. |
71 | ZHAO Dan, REN Jizhong, LI Hui, et al. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation[J]. Journal of Energy Chemistry, 2014, 23(2): 227-234. |
72 | SURYA MURALI R, ISMAIL A F, RAHMAN M A, et al. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations[J]. Separation and Purification Technology, 2014, 129: 1-8. |
73 | ZHAO Jianhua, XIE Ke, LIU Liang, et al. Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite[J]. Journal of Membrane Science, 2019, 583: 23-30. |
74 | AHMAD Mohd Zamidi, Violeta MARTIN-GIL, SUPINKOVA Tatana, et al. Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation[J]. Separation and Purification Technology, 2021, 254: 117582. |
75 | ZHANG Qian, ZHOU Ming, LIU Xiufeng, et al. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 636: 119612. |
76 | CHEN Yuanxin, WANG Bo, ZHAO Lin, et al. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas[J]. Journal of Membrane Science, 2015, 495: 415-423. |
77 | MALEH Mohammad Salehi, RAISI Ahmadreza. CO2-philic moderate selective layer mixed matrix membranes containing surface functionalized NaX towards highly-efficient CO2 capture[J]. RSC Advances, 2019, 9(27): 15542-15553. |
78 | LI Shiguang, ALVARADO Guerrero, NOBLE Richard D, et al. Effects of impurities on CO2/CH4 separations through SAPO-34 membranes[J]. Journal of Membrane Science, 2005, 251(1/2): 59-66. |
79 | SUNITHA K, YAMUNA RANI K, MOULIK Siddhartha, et al. Separation of NMP/water mixtures by nanocomposite PEBA membrane: Part Ⅰ. Membrane synthesis, characterization and pervaporation performance[J]. Desalination, 2013, 330: 1-8. |
80 | Shu Hua GOH, LAU Hui Shen, YONG Wai fen. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: A review on advanced materials in harsh environmental applications[J]. Small, 2022, 18(20): 2107536. |
81 | SUTRISNA Putu Doddy, HOU Jingwei, LI Hongyu, et al. Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes[J]. Journal of Membrane Science, 2017, 524: 266-279. |
82 | LI Xiao, YU Shifan, LI Kun, et al. Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes[J]. Separation and Purification Technology, 2020, 248: 117080. |
83 | YUAN Jianwei, ZHU Haipeng, SUN Jiajia, et al. Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38575-38583. |
84 | SHEN Jie, LIU Gongping, HUANG Kang, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2016, 513: 155-165. |
85 | GUO Fei, LI Bingzhang, DING Rui, et al. A novel composite material UiO-66@HNT/pebax mixed matrix membranes for enhanced CO2/N2 separation[J]. Membranes, 2021, 11(9): 693. |
86 | LI Chunyu, WU Chao, ZHANG Baoquan. Enhanced CO2/CH4 separation performances of mixed matrix membranes incorporated with two-dimensional Ni-based MOF nanosheets[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 642-648. |
87 | XU Shanshan, HUANG Hongliang, GUO Xiangyu, et al. Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC[J]. Separation and Purification Technology, 2021, 257: 117979. |
1 | JONES Matthew W, PETERS Glen P, GASSER Thomas, et al. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850[J]. Scientific Data, 2023, 10: 155. |
2 | MILLAR Richard J, FUGLESTVEDT Jan S, FRIEDLINGSTEIN Pierre, et al. Emission budgets and pathways consistent with limiting warming to 1.5℃[J]. Nature Geoscience, 2017, 10(10): 741-747. |
3 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
4 | CHERNIKOVA Valeriya, SHEKHAH Osama, BELMABKHOUT Youssef, et al. Nanoporous fluorinated metal-organic framework-based membranes for CO2 capture[J]. ACS Applied Nano Materials, 2020, 3(7): 6432-6439. |
5 | SHI Dongchen, YU Xin, FAN Weidong, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
6 | ZHOU Sheng, SHEKHAH Osama, Adrian RAMÍREZ, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606(7915): 706-712. |
7 | YU Bing, CONG Hailin, LI Zejing, et al. Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation[J]. Journal of Applied Polymer Science, 2013, 130(4): 2867-2876. |
8 | FURUKAWA Hiroyasu, Nakeun KO, GO Yong Bok, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
9 | ROSI Nathaniel L, ECKERT Juergen, EDDAOUDI Mohamed, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129. |
10 | GENG Keyu, HE Ting, LIU Ruoyang, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
11 | CHOI Minkee, CHO Hae Sung, SRIVASTAVA Rajendra, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Materials, 2006, 5(9): 718-723. |
12 | PARK Ho Bum, KAMCEV Jovan, ROBESON Lloyd M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
88 | WU Chao, GUO Hongyu, LIU Xiufeng, et al. Mixed matrix membrane comprising glycine grafted CuBTC for enhanced CO2 separation performances with excellent stability under humid atmosphere[J]. Separation and Purification Technology, 2022, 295: 121287. |
89 | ZHENG Weigang, TIAN Zhihong, WANG Zhen, et al. Dual-function biomimetic carrier based facilitated transport mixed matrix membranes with high stability for efficient CO2/N2 separation[J]. Separation and Purification Technology, 2022, 285: 120371. |
90 | MISHRA Biswajit, TRIPATHI Bijay P. Flexible covalent organic framework membranes with linear aliphatic amines for enhanced organic solvent nanofiltration[J]. Journal of Materials Chemistry A, 2023, 11(30): 16321-16333. |
91 | WANG Hongjian, ZHAO Jiashuai, LI Yang, et al. Aqueous two-phase interfacial assembly of COF membranes for water desalination[J]. Nano-Micro Letters, 2022, 14(1): 216. |
92 | WANG Han, ZENG Zhuotong, XU Piao, et al. Recent progress in covalent organic framework thin films: Fabrications, applications and perspectives[J]. Chemical Society Reviews, 2019, 48(2): 488-516. |
93 | ZHANG Yahui, MA Liang, Yongqin LYU, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chemical Engineering Journal, 2022, 430: 133001. |
94 | DUAN Ke, WANG Jing, ZHANG Yatao, et al. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation[J]. Journal of Membrane Science, 2019, 572: 588-595. |
95 | ZOU Changchang, LI Qianqian, HUA Yinying, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29093-29100. |
96 | ZHAO Rui, WU Hong, YANG Leixin, et al. Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading[J]. Journal of Membrane Science, 2020, 600: 117841. |
97 | LIU Yutao, WU Hong, WU Siqi, et al. Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 618: 118693. |
98 | GHANBARI Roham, MARANDI Alireza, ZARE Ehsan Nazarzadeh. Development of melamine-based covalent organic framework-MOF pearl-like heterostructure integrated poly(ether-block-amide) for CO2/CH4 separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109269. |
99 | SUN Yanyong, GOU Minmin. Highly efficient of CO2/CH4 separation performance via the pebax membranes with multi-functional polymer nanotubes[J]. Microporous and Mesoporous Materials, 2022, 342: 112120. |
13 | DATTA Shuvo Jit, MAYORAL Alvaro, BETTAHALLI Narasimha Murthy Srivatsa, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087. |
14 | XIANG Long, SHENG Luqian, WANG Chongqing, et al. Amino-functionalized ZIF-7 nanocrystals: Improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Advanced Materials, 2017, 29(32): 1606999. |
15 | FENG Yang, YAN Wei, KANG Zixi, et al. Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes[J]. Chemical Engineering Journal, 2023, 465: 142873. |
16 | LI Shuo, SUN Yujie, WANG Zhaoxu, et al. Rapid fabrication of high-permeability mixed matrix membranes at mild condition for CO2 capture (small 19/2023)[J]. Small, 2023, 19(19): 2208177. |
17 | KANEHASHI Shinji, AGUIAR Alita, LU Hiep T, et al. Effects of industrial gas impurities on the performance of mixed matrix membranes[J]. Journal of Membrane Science, 2018, 549: 686-692. |
18 | CHEN Xiaoyuan, Hoang VINH-THANG, RAMIREZ Antonio Avalos, et al. Membrane gas separation technologies for biogas upgrading[J]. RSC Advances, 2015, 5(31): 24399-24448. |
19 | SAHOO Rupam, MONDAL Supriya, MUKHERJEE Debolina, et al. Meta-organic frameworks for CO2 separation from flue and biogas mixtures[J]. Advanced Functional Materials, 2022, 32(45): 2207197. |
20 | 闫海龙, 高缨佳, 胡爱军, 等. 分离CO2的纳米材料/Pebax混合基质膜研究进展[J]. 膜科学与技术, 2021, 41(5): 174-182. |
YAN Hailong, GAO Yingjia, HU Aijun, et al. Research progress of nanomaterial/Pebax mixed matrix membrane for CO2 separation[J]. Membrane Science and Technology, 2021, 41(5): 174-182. | |
21 | 俞江南, 李康, 陈飞, 等. 面向CO2分离的混合基质膜研究进展[J]. 化学工业与工程, 2023, 40(3): 74-83. |
YU Jiangnan, LI Kang, CHEN Fei, et al. Research progress of mixed matrix membranes for CO2 separation[J]. Chemical Industry and Engineering, 2023, 40(3): 74-83. | |
22 | ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. |
23 | CHENG Youdong, WANG Zhihong, ZHAO Dan. Mixed matrix membranes for natural gas upgrading: Current status and opportunities[J]. Industrial & Engineering Chemistry Research, 2018, 57: 4139-4169. |
24 | CARREON Moises A, LI Shiguang, FALCONER John L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2008, 130(16): 5412-5413. |
25 | LAN Jingming, WANG Baoying, BO Chunmiao, et al. Progress on fabrication and application of activated carbon sphere in recent decade[J]. Journal of Industrial and Engineering Chemistry, 2023, 120: 47-72. |
26 | SWAIN Suchhanda S, UNNIKRISHNAN Lakshmi, MOHANTY Smita, et al. Carbon nanotubes as potential candidate for separation of H2-CO2 gas pairs[J]. International Journal of Hydrogen Energy, 2017, 42(49): 29283-29299. |
27 | SIEGELMAN Rebecca L, KIM Eugene J, LONG Jeffrey R. Porous materials for carbon dioxide separations[J]. Nature Materials, 2021, 20(8): 1060-1072. |
28 | MASON Jarad A, MCDONALD Thomas M, Tae-Hyun BAE, et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O[J]. Journal of the American Chemical Society, 2015, 137(14): 4787-4803. |
29 | CHENG Youdong, YING Yunpan, JAPIP Susilo, et al. Membrane technology: Advanced porous materials in mixed matrix membranes [J]. Advanced Materials, 2018, 30(47): 1870355. |
30 | CHEN Yuzhen, ZHANG Rui, JIAO Long, et al. Metal-organic framework-derived porous materials for catalysis[J]. Coordination Chemistry Reviews, 2018, 362: 1-23. |
31 | XIA Qingchun, LI Zijian, TAN Chunxia, et al. Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions[J]. Journal of the American Chemical Society, 2017, 139(24): 8259-8266. |
32 | ZHAO Xiaojia, PACHFULE Pradip, THOMAS Arne. Covalent organic frameworks (COFs) for electrochemical applications[J]. Chemical Society Reviews, 2021, 50(12): 6871-6913. |
33 | ZHU Chengyi, PAN Mei, SU Chengyong. Metal-organic cages for biomedical applications[J]. Israel Journal of Chemistry, 2019, 59(3/4): 209-219. |
34 | YANG Ziqi, WU Zhongjie, Shing Bo PEH, et al. Mixed-matrix membranes containing porous materials for gas separation: From metal-organic frameworks to discrete molecular cages[J]. Engineering, 2023, 23: 40-55. |
35 | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6): 2453-2462. |
100 | WANG Yonghong, MA Zhiwei, ZHANG Xinru, et al. Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation[J]. Journal of Membrane Science, 2022, 644: 120182. |
101 | DAI Yan, RUAN Xuehua, YAN Zhijun, et al. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture[J]. Separation and Purification Technology, 2016, 166: 171-180. |
102 | LUO Wenjia, NIU Zhenhua, MU Peng, et al. Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2 [J]. Macromolecules, 2022, 55(21): 9851-9859. |
35 | SHI Fei, LI Yifan. Advances of mixed matrix membrane for CO2 capture[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. |
36 | BURTON Allen. Porous architectures[J]. Nature Materials, 2003, 2(7): 438-440. |
37 | CHAI Yuchao, DAI Weili, WU Guangjun, et al. Confinement in a zeolite and zeolite catalysis[J]. Accounts of Chemical Research, 2021, 54(13): 2894-2904. |
38 | FUNKE Hans H, FRENDER Kimberly R, GREEN Kevin M, et al. Influence of adsorbed molecules on the permeation properties of silicalite membranes[J]. Journal of Membrane Science, 1997, 129(1): 77-82. |
39 | IYOKI Kenta, KIKUMASA Kakeru, ONISHI Takako, et al. Extremely stable zeolites developed via designed liquid-mediated treatment[J]. Journal of the American Chemical Society, 2020, 142(8): 3931-3938. |
40 | KHULBE K C, MATSUURA T, FENG C Y, et al. Recent development on the effect of water/moisture on the performance of zeolite membrane and MMMs containing zeolite for gas separation; review[J]. RSC Advances, 2016, 6(49): 42943-42961. |
41 | KOSINOV Nikolay, AUFFRET Clement, Canan GÜCÜYENER, et al. High flux high-silica SSZ-13 membrane for CO2 separation[J]. Journal of Materials Chemistry A, 2014, 2(32): 13083-13092. |
42 | HUNGER B, MATYSIK S, HEUCHEL M, et al. Adsorption of water on zeolites of different types[J]. Journal of Thermal Analysis, 1997, 49(1): 553-565. |
43 | SHI Huaizhong, ZHANG Jiani, LI Jiyang. Highly stable aluminosilicate FAU zeolites with excellent proton conductivity[J]. Inorganic Chemistry Communications, 2021, 129: 108626. |
44 | ZHOU Hongcai, LONG Jeffrey R, YAGHI Omar M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
45 | LIANG Weibin, BHATT Prashant M, SHKURENKO Aleksander, et al. A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas[J]. Chem, 2019, 5(4): 950-963. |
46 | SEOANE Beatriz, CORONAS Joaquin, GASCON Ignacio, et al. Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture?[J]. Chemical Society Reviews, 2015, 44(8): 2421-2454. |
47 | SAHA Dipendu, DENG Shuguang. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177[J]. Journal of Colloid and Interface Science, 2010, 348(2): 615-620. |
48 | PETERSON Gregory W, WAGNER George W, BALBOA Alex, et al. Ammonia vapor removal by Cu3(BTC)2 and its characterization by MAS NMR[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2009, 113(31): 13906-13917. |
49 | ETHIRAJ Jayashree, BONINO Francesca, LAMBERTI Carlo, et al. H2S interaction with HKUST-1 and ZIF-8 MOFs: A multitechnique study[J]. Microporous and Mesoporous Materials, 2015, 207: 90-94. |
50 | NGUYEN Joseph G, COHEN Seth M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. Journal of the American Chemical Society, 2010 132(13): 4560-4561. |
51 | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
52 | LIU Xinlei, LI Yanshuo, BAN Yujie, et al. Improvement of hydrothermal stability of zeolitic imidazolate frameworks[J]. Chemical Communications, 2013, 49(80): 9140-9142. |
53 | PISCOPO C G, POLYZOIDIS A, SCHWARZER M, et al. Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications[J]. Microporous and Mesoporous Materials, 2015, 208: 30-35. |
54 | JOSHI Jayraj N, ZHU Guanghui, LEE Jason J, et al. Probing metal-organic framework design for adsorptive natural gas purification[J]. Langmuir, 2018, 34(29): 8443-8450. |
55 | CHEN Yang, ZHANG Feifei, WANG Yong, et al. Recyclable ammonia uptake of a MIL series of metal-organic frameworks with high structural stability[J]. Microporous and Mesoporous Materials, 2018, 258: 170-177. |
56 | KHABZINA Yoldes, DHAINAUT Jeremy, AHLHELM Matthias, et al. Synthesis and shaping scale-up study of functionalized UiO-66 MOF for ammonia air purification filters[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8200-8208. |
57 | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
58 | LANNI Laura M, William TILFORD R, BHARATHY Muktha, et al. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(35): 13975-13983. |
59 | WEI Pifeng, QI Mingzhu, WANG Zhipeng, et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis[J]. Journal of the American Chemical Society, 2018, 140(13): 4623-4631. |
60 | BISWAL Bishnu P, CHANDRA Suman, KANDAMBETH Sharath, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(14): 5328-5331. |
61 | XU Hong, GAO Jia, JIANG Donglin. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts[J]. Nature Chemistry, 2015, 7(11): 905-912. |
62 | DALAPATI Sasanka, JIN Shangbin, GAO Jia, et al. An azine-linked covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(46): 17310-17313. |
[1] | SHI Jiabo, ZHANG Yuxuan, CHEN Xuefeng, TAN Jiaojun. Preparation and oil-water separation property of tannic acid-nanoclay synergistically modified collagen fiber-based porous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4624-4629. |
[2] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
[3] | WANG Juan, BIAN Chunlin, CHEN Xiangyu, WANG Ying, WANG Xindong, ZUO Yanxin, XIAO Benyi. Research advances of microaerobic anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4005-4014. |
[4] | WANG Tao, GAO Xiang, GAO Jifeng, DENG Haiquan, YU Xianyong, ZHOU Zhenhua, TANG Ling, LYU Hang. Application of modified Cu-BTC-based mixed matrix membrane in CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3240-3246. |
[5] | MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759. |
[6] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[7] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
[8] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
[9] | QI Yabing, WU Zibo, YANG Qingcui. Research advances of preparation of Pickering emulsions and their stability [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2017-2030. |
[10] | LU Guangjun, HAN Jingang, CHEN Ying, MA Zhibin. Preparation of magnesium slag-based porous materials and their performance for Pb2+ adsorption in wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2126-2134. |
[11] | LIU Han, QU Minglu, YE Zhendong, YANG Fan, HUANG Beijia, ZHANG Yaning, LIU Hongzhi. Evaluation of the thermal energy storage performance of calcium-magnesium binary composite salt hydrates [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1764-1773. |
[12] | JIN Binhao, ZHU Xiaoqian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, SU Baogen, YANG Qiwei. Advances in adsorbents for aromatics/cycloalkanes separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881. |
[13] | LU Zhiqiang, SHI Yu, CHEN Pengyu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of a vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1224-1231. |
[14] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
[15] | SUN Hongjun, LI Teng, LI Jinxia, DING Hongbing. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |