Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4980-4995.DOI: 10.16085/j.issn.1000-6613.2023-1298
• Materials science and technology • Previous Articles
SHEN Chunyu1(), LI Cuili2, TANG Jianwei1,3,4, LIU Yong2,3, LIU Pengfei1,3,4, DING Junxiang1,3,4, SHEN Bo1,3,4, WANG Baoming1,3,4()
Received:
2023-07-30
Revised:
2023-09-25
Online:
2024-09-30
Published:
2024-09-15
Contact:
WANG Baoming
申纯宇1(), 李翠利2, 汤建伟1,3,4, 刘咏2,3, 刘鹏飞1,3,4, 丁俊祥1,3,4, 申博1,3,4, 王保明1,3,4()
通讯作者:
王保明
作者简介:
申纯宇(1999—),男,硕士研究生,研究方向为纳米氢氧化镁制备与结构调控。E-mail:1395036067@qq.com。
基金资助:
CLC Number:
SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995.
申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1298
镁源 | 溶剂 | 添加剂 | 温度/℃ | 时间/h | 形貌 | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|---|---|
MgCl2 | NaOH、H2O | — | 60 | 24 | 花椰菜状 | 300 | [ |
MgCl2 | NH3·H2O | — | 60 | 24 | 片状 | 302×26 | [ |
Mg(NO3)2 | NH3·H2O | — | 25 | 24 | 片状 | 351×10 | [ |
MgSO4 | NH3·H2O | — | 25 | 24 | 片状 | 250×15 | [ |
MgCl2 | NaOH、H2O | — | 60 | 1 | 片状 | 30~150(正向沉淀法) 20~50(反向沉淀法) 10~70(双向沉淀法) 30~50(超重力沉淀法) | [ |
MgSO4 | NaOH、H2O | 硬脂酸镁(MgSA)、 五水硫酸铜 | 50 | 4.5 | 棒状 | 150×12 | [ |
MgCl2 | NaOH、H2O | NaCl | 60~100 | 50~200min | 球状 | 6~30μm | [ |
Mg(NO3)2 | NaOH、H2O | 海藻提取物 | — | 4 | 片状 | 7.75×16.29 | [ |
MgCl2 | NH3·H2O、无水乙醇 | 聚乙二醇(PEG400) | 50 | 3 | — | — | [ |
MgSO4 | NaOH、H2O | PEG200、PEG8000、PEG20000 | 80 | — | 不规则状 | 28~79 | [ |
MgCl2 | NH3·H2O | PEG1000 | 60 | 1.5 | 管状 | 管径6~34、长度63~200 | [ |
MgCl2 | NaOH、H2O | PEG4000、CaCl2、NaCl、KCl | 20 | 1 | 片状 | 19.22×10 | [ |
镁源 | 溶剂 | 添加剂 | 温度/℃ | 时间/h | 形貌 | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|---|---|
MgCl2 | NaOH、H2O | — | 60 | 24 | 花椰菜状 | 300 | [ |
MgCl2 | NH3·H2O | — | 60 | 24 | 片状 | 302×26 | [ |
Mg(NO3)2 | NH3·H2O | — | 25 | 24 | 片状 | 351×10 | [ |
MgSO4 | NH3·H2O | — | 25 | 24 | 片状 | 250×15 | [ |
MgCl2 | NaOH、H2O | — | 60 | 1 | 片状 | 30~150(正向沉淀法) 20~50(反向沉淀法) 10~70(双向沉淀法) 30~50(超重力沉淀法) | [ |
MgSO4 | NaOH、H2O | 硬脂酸镁(MgSA)、 五水硫酸铜 | 50 | 4.5 | 棒状 | 150×12 | [ |
MgCl2 | NaOH、H2O | NaCl | 60~100 | 50~200min | 球状 | 6~30μm | [ |
Mg(NO3)2 | NaOH、H2O | 海藻提取物 | — | 4 | 片状 | 7.75×16.29 | [ |
MgCl2 | NH3·H2O、无水乙醇 | 聚乙二醇(PEG400) | 50 | 3 | — | — | [ |
MgSO4 | NaOH、H2O | PEG200、PEG8000、PEG20000 | 80 | — | 不规则状 | 28~79 | [ |
MgCl2 | NH3·H2O | PEG1000 | 60 | 1.5 | 管状 | 管径6~34、长度63~200 | [ |
MgCl2 | NaOH、H2O | PEG4000、CaCl2、NaCl、KCl | 20 | 1 | 片状 | 19.22×10 | [ |
镁源 | 溶剂 | 添加剂 | 温度/℃ | 时间/h | 形貌 | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|---|---|
Mg | H2O | EDA | 180 | 20 | 棒状 | 200×20 | [ |
Mg10(OH)18Cl2·5H2O纳米线 | H2O | EDA | 180 | 6 | 管状 | 外径80~150、壁厚30~50、长度5~10μm | [ |
MgCl2 | NaOH、H2O | CTAB | 180 | 18 | 片状 | 60~100 | [ |
PEG500 | 板状 | 80~90 | |||||
明胶 | 球状 | 30~45 | |||||
油酸 | 圆盘状 | 90 | |||||
MgCl2 | NH3·H2O | MEA、柠檬酸 | 180 | 6 | 片状 | 246 | [ |
Mg(NO3)2 | N2H4·H2O | — | 150 | 24 | 片状 | — | [ |
Mg(NO3)2·6H2O | N2H4·H2O | — | 180 | 12 | 片状 | 150~260 | [ |
MgCl2 | NaOH、H2O | PVP | 200 | 8 | 片状 | 134(微波) | [ |
局部高镁镍渣(HMNS) | NaOH、H2O | — | 200 | 24 | 片状 | 189×13 | [ |
镁源 | 溶剂 | 添加剂 | 温度/℃ | 时间/h | 形貌 | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|---|---|
Mg | H2O | EDA | 180 | 20 | 棒状 | 200×20 | [ |
Mg10(OH)18Cl2·5H2O纳米线 | H2O | EDA | 180 | 6 | 管状 | 外径80~150、壁厚30~50、长度5~10μm | [ |
MgCl2 | NaOH、H2O | CTAB | 180 | 18 | 片状 | 60~100 | [ |
PEG500 | 板状 | 80~90 | |||||
明胶 | 球状 | 30~45 | |||||
油酸 | 圆盘状 | 90 | |||||
MgCl2 | NH3·H2O | MEA、柠檬酸 | 180 | 6 | 片状 | 246 | [ |
Mg(NO3)2 | N2H4·H2O | — | 150 | 24 | 片状 | — | [ |
Mg(NO3)2·6H2O | N2H4·H2O | — | 180 | 12 | 片状 | 150~260 | [ |
MgCl2 | NaOH、H2O | PVP | 200 | 8 | 片状 | 134(微波) | [ |
局部高镁镍渣(HMNS) | NaOH、H2O | — | 200 | 24 | 片状 | 189×13 | [ |
镁源 | 溶剂 | 添加剂 | 温度/℃ | 时间 /min | 其他条件 | 形貌 | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|---|---|---|
Mg(NO3)2 | NaOH、H2O | — | 25 | 5d | 半透膜,微波20W、2.45GHz | 纤维状 | (20~40)×(100~150) | [ |
MgCl2 | NaOH、H2O | 尿素 | 220 | 30 | 微波1000W | 片状 | 厚度95±10、长度几微米 | [ |
Mg | H2O | — | — | — | 微波2.45GHz、20kPa | 三角形、截断三角形和六边形片状 | 50、80、70 | [ |
Mg | H2O | — | — | 8 | 微波1000W | 颗粒状、片状 | 43、32 | [ |
Mg | NaOH、H2O | — | 25~220 | 10 | 微波1000W | 片状 | 250~500 | [ |
MgCl2 | H2O | 尿素 | 25~220 | 10 | 微波1000W | 玫瑰花团簇状 | 50μm | |
Mg(C2O2H4)2 | H2O | 尿素 | 25~220 | 10 | 微波1000W | 玫瑰花团簇状 | 20μm | |
MgO | H2O | — | — | 6 | 微波800W、2.45GHz | 片状 | 长度100~300、厚度10~60 | [ |
Mg | H2O | NaCl | 20 | 30 | 微波1000W、20kHz | 片状 | 长度70~200、厚度20 | [ |
镁源 | 溶剂 | 添加剂 | 温度/℃ | 时间 /min | 其他条件 | 形貌 | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|---|---|---|
Mg(NO3)2 | NaOH、H2O | — | 25 | 5d | 半透膜,微波20W、2.45GHz | 纤维状 | (20~40)×(100~150) | [ |
MgCl2 | NaOH、H2O | 尿素 | 220 | 30 | 微波1000W | 片状 | 厚度95±10、长度几微米 | [ |
Mg | H2O | — | — | — | 微波2.45GHz、20kPa | 三角形、截断三角形和六边形片状 | 50、80、70 | [ |
Mg | H2O | — | — | 8 | 微波1000W | 颗粒状、片状 | 43、32 | [ |
Mg | NaOH、H2O | — | 25~220 | 10 | 微波1000W | 片状 | 250~500 | [ |
MgCl2 | H2O | 尿素 | 25~220 | 10 | 微波1000W | 玫瑰花团簇状 | 50μm | |
Mg(C2O2H4)2 | H2O | 尿素 | 25~220 | 10 | 微波1000W | 玫瑰花团簇状 | 20μm | |
MgO | H2O | — | — | 6 | 微波800W、2.45GHz | 片状 | 长度100~300、厚度10~60 | [ |
Mg | H2O | NaCl | 20 | 30 | 微波1000W、20kHz | 片状 | 长度70~200、厚度20 | [ |
1 | ZHANG Tiefeng, WANG Chunfeng, WANG Yongliang, et al. Enhanced flame retardancy in ethylene-vinyl acetate copolymer/magnesium hydroxide/polycarbosilane blends[J]. Polymers, 2021, 14(1): 36. |
2 | WANG Qilei. The thermal resistance, flame retardance, and smoke control mechanism of nano MH/GF/NBR composite material[J]. Science and Engineering of Composite Materials, 2014, 21(3): 309-314. |
3 | ZHANG Chen, CHENG Xianwei, GUAN Jinping, et al. Preparation of nano-Mg(OH)2 for surface coating of silk fabric with improved flame retardancy and smoke suppression[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126868. |
4 | CHENG Liangsong, REN Shaobo, BROSSE Nicolas, et al. Synergic flame-retardant effect of cellulose nanocrystals and magnesium hydroxide in polyurethane wood coating[J]. Journal of Wood Chemistry and Technology, 2022, 42(4): 297-304. |
5 | COSTES L, LAOUTID F, BROHEZ S, et al. Bio-based flame retardants: When nature meets fire protection[J]. Materials Science & Engineering, 2017, 117: 1-25. |
6 | VAN DER VEEN Ike, DE BOER Jacob. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153. |
7 | HE Wentao, SONG Pingan, YU Bin, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Progress in Materials Science, 2020, 114: 100687. |
8 | LI Baojun, CAO Huaqiang, YIN Gui. Mg(OH)2@reduced graphene oxide composite for removal of dyes from water[J]. Journal of Materials Chemistry, 2011, 21(36): 13765-13768. |
9 | PIERO Baglioni, RODORICO Giorgi. Soft and hard nanomaterials for restoration and conservation of cultural heritage[J]. Soft Matter, 2006, 2(4): 293-303. |
10 | MARCELLA Bini, FRANCESCO Monteforte, IRENE Quinzeni, et al. Hybrid compounds for improving drugs solubility: Synthesis, physico-chemical and pharmaceutical characterization of Nimesulide-LDH[J]. Journal of Solid State Chemistry, 2019, 272: 131-137. |
11 | GIULIA Balducci, LAURA Bravo Diaz, GREGORY Duncan H. Recent progress in the synthesis of nanostructured magnesium hydroxide[J]. CrystEngComm, 2017, 19(41): 6067-6084. |
12 | 申红艳, 刘有智. 纳米氢氧化镁的制备及其原位改性[J]. 化工进展, 2017, 36(1): 294-298. |
SHEN Hongyan, LIU Youzhi. Preparation and in situ modification of magnesium hydroxide nanoparticles[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 294-298. | |
13 | RAJABIMASHHADI Zahra, NAGHIZADEH Rahim, ZOLRIASATEIN Ashkan, et al. Novel synthesis of nano Mg(OH)2 by means of hydrothermal method with different surfactants[J]. Nanomaterials, 2023, 13(3): 454. |
14 | 武俊, 钱永芳, 吕丽华, 等. 静电纺PVP/Mg(OH)2阻燃纳米纤维材料的制备及性能[J]. 上海纺织科技, 2022, 50(7): 23-26, 52. |
WU Jun, QIAN Yongfang, Lihua LYU, et al. Preparation and properties of electrospun PVP/Mg(OH)2 flame retardant nanofiber materials[J]. Shanghai Textile Science & Technology, 2022, 50(7): 23-26, 52. | |
15 | SONG Xingfu, SUN Shuying, ZHANG Dengke, et al. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization[J]. Frontiers of Chemical Science and Engineering, 2011, 5(4): 416-421. |
16 | WANG Wei, QIAO Xueliang, CHEN Jianguo, et al. Facile synthesis of magnesium oxide nanoplates via chemical precipitation[J]. Materials Letters, 2007, 61(14/15): 3218-3220. |
17 | HENRIST C, MATHIEU J P, VOGELS C, et al. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J]. Journal of Crystal Growth, 2003, 249(1/2): 321-330. |
18 | 申红艳, 刘有智, 马鹏程, 等. 不同制备方法对纳米氢氧化镁性能的影响[J]. 化工进展, 2016, 35(4): 1149-1153. |
SHEN Hongyan, LIU Youzhi, MA Pengcheng, et al. Effect of different preparation methods on the properties of magnesium hydroxide nanoparticles[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1149-1153. | |
19 | CHEN Dehong, ZHU Lunyu, ZHANG Huaiping, et al. Magnesium hydroxide nanoparticles with controlled morphologies via wet coprecipitation[J]. Materials Chemistry and Physics, 2008, 109(2/3): 224-229. |
20 | GOVINDARAJU K, ANAND K V, ANBARASU S, et al. Seaweed (Turbinaria ornata)-assisted green synthesis of magnesium hydroxide [Mg(OH)2] nanomaterials and their anti-mycobacterial activity[J]. Materials Chemistry and Physics, 2020, 239: 122007. |
21 | PILARSKA Agnieszka, WYSOKOWSKI Marcin, MARKIEWICZ Ewa, et al. Synthesis of magnesium hydroxide and its calcinates by a precipitation method with the use of magnesium sulfate and poly(ethylene glycols)[J]. Powder Technology, 2013, 235: 148-157. |
22 | ZHENG Jun, ZHOU Wei. Solution-phase synthesis of magnesium hydroxide nanotubes[J]. Materials Letters, 2014, 127: 17-19. |
23 | YOUSEFI Sadegh, GHASEMI Behrooz. Mg(OH)2 nanostructures using impure brine: Optimization of synthesis parameters by Taguchi robust design and study of optical properties[J]. Research on Chemical Intermediates, 2021, 47(5): 2029-2047. |
24 | SIERRA-FERNANDEZ A, Gomez-Villalba LS, MILOSEVIC O, et al. Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method[J]. Ceramics International, 2014, 40(8): 12285-12292. |
25 | 任鹏飞, 陈建铭, 宋云华, 等. 水热合成制备超细氢氧化镁阻燃剂[J]. 化工进展, 2005, 24(2): 186-189. |
REN Pengfei, CHEN Jianming, SONG Yunhua, et al. Study on the preparation of ultrafine magnesium hydroxide flame retardant in different hydrothermal treatment methods[J]. Chemical Industry and Engineering Progress, 2005, 24(2): 186-189. | |
26 | LI Y, SUI M, DING Y, et al. Preparation of Mg(OH)2 nanorods[J]. Advanced Materials, 2000, 12(11): 818-821. |
27 | FAN Weiliu, SUN Sixiu, YOU Liping, et al. Solvothermal synthesis of Mg(OH)2 nanotubes using Mg10(OH)18Cl2·5H2O nanowires as precursors[J]. J Mater Chem, 2003, 13(12): 3062-3065. |
28 | CHEN Yongbin, ZHOU Tao, FANG Huaxiong, et al. A novel preparation of nano-sized hexagonal Mg(OH)2 [J]. Procedia Engineering, 2015, 102: 388-394. |
29 | JIN Dalai, GU Xiaoyun, YU Xiaojing, et al. Hydrothermal synthesis and characterization of hexagonal Mg(OH)2 nano-flake as a flame retardant[J]. Materials Chemistry and Physics, 2008, 112(3): 962-965. |
30 | ZONG Luyao, LI Liyan, ZHANG Jiyi, et al. Synthesis of high dispersion and uniform nano-sized flame retardant-used hexagonal Mg(OH)2 [J]. Journal of Cluster Science, 2016, 27(6): 1831-1841. |
31 | QIAN Binbin, LIU Huiling, MA Bing, et al. Bulk trash to nano treasure: Synthesis of two-dimensional brucite nanosheet from high-magnesium nickel slag[J]. Journal of Cleaner Production, 2022, 333: 130196. |
32 | WU Huaqiang, SHAO Mingwang, GU Jiashan, et al. Microwave-assisted synthesis of fibre-like Mg(OH)2 nanoparticles in aqueous solution at room temperature[J]. Materials Letters, 2004, 58(16): 2166-2169. |
33 | Faten AL-HAZMI, UMAR Ahmad, DAR G N, et al. Microwave assisted rapid growth of Mg(OH)2 nanosheet networks for ethanol chemical sensor application[J]. Journal of Alloys and Compounds, 2012, 519: 4-8. |
34 | HATTORI Yoshiaki, MUKASA Shinobu, TOYOTA Hiromichi, et al. Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water[J]. Materials Chemistry and Physics, 2011, 131(1/2): 425-430. |
35 | AL-GAASHANI R, RADIMAN S, AL-DOURI Y, et al. Investigation of the optical properties of Mg(OH)2 and MgO nanostructures obtained by microwave-assisted methods[J]. Journal of Alloys and Compounds, 2012, 521: 71-76. |
36 | BEALL Gary W, DURAIA El-Shazly M, Farid EL-TANTAWY, et al. Rapid fabrication of nanostructured magnesium hydroxide and hydromagnesite via microwave-assisted technique[J]. Powder Technology, 2013, 234: 26-31. |
37 | HANLON James M, LAURA Bravo Diaz, GIULIA Balducci, et al. Rapid surfactant-free synthesis of Mg(OH)2 nanoplates and pseudomorphic dehydration to MgO[J]. CrystEngComm, 2015, 17(30): 5672-5679. |
38 | YU Jimmy C, XU Anwu, ZHANG Lizhi, et al. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J]. The Journal of Physical Chemistry B, 2004, 108(1): 64-70. |
39 | OLGA Baidukova, SKORB Ekaterina V. Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium[J]. Ultrasonics-Sonochemistry, 2016, 31: 423-428. |
40 | WU Haihong, GAO Chunjuan, MA Laibo, et al. Controllable microemulsion method for the synthesis of Mg(OH)2/PS core-shell structures[J]. Micro & Nano Letters, 2021, 16(8): 413-418. |
41 | LIN Shengnan, ZHANG Tingan, YANG Han. Preparation and mechanism analysis of nano-Mg(OH)2 by electroconversion of MgCl2 [J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 31(7): 667-674. |
42 | SANTHOSH Balanand, KUMAR Muthusundar, MATHEWS Jeen Maria, et al. A facile hydrous mechano-synthesis of magnesium hydroxide [Hy-Mg(OH)2] nano fillers for flame-retardant polyester composites[J]. Chemical Engineering Journal Advances, 2023, 14: 100466. |
43 | GUI H, ZHANG X, LIU Y, et al. Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites[J]. Composites Science and Technology, 2007, 67(6): 974-980. |
44 | HAN Kyaw Thet, LHOSUPASIRIRAT Siraprapa, SRIKHIRIN Pongsid, et al. Development of flame retardant stearic acid doped graphite powder and magnesium hydroxide nanoparticles, material for thermal energy storage applications[J]. Journal of Physics: Conference Series, 2022, 2175(1): 012043. |
45 | JURAN Noh, INSUNG Kang, JAEHYUK Choi, et al. Surface modification of magnesium hydroxide nanoparticles with hexylphosphoric acid to improve thermal stabilities of polyethylene composites[J]. Polymer Bulletin, 2016, 73(10): 2855-2866. |
46 | FENG Xi, WANG Zhengyu, MA Hongli, et al. Development of bio-based magnesium phosphate flame retardant for simultaneously improved flame retardancy, smoke suppression and mechanical properties of HDPE[J]. Journal of Applied Polymer Science, 2023, 140(23): e53927. |
47 | YAO Meng, WU Hongjuan, LIU Hao, et al. In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA[J]. Polymer Degradation and Stability, 2021, 183: 109417. |
48 | WANG Sen, LIANG Shitong, WANG Kesong, et al. Enhanced flame retardancy, smoke suppression, and acid resistance of polypropylene/magnesium hydroxide composite by expandable graphite and microencapsulated red phosphorus[J]. Journal of Vinyl and Additive Technology, 2023, 29(2): 395-409. |
49 | JIAO Wanli, ZHONG Shaofeng, YU Xueman. Preparation and properties of superhydrophobic and flame-retardant cotton fabric[J]. Chinese Journal of Applied Chemistry, 2020, 37: 301-306. |
50 | 李志斌, 唐辉, 罗大伟, 等. 废弃PET化学回收及制备不饱和聚酯树脂的研究进展[J]. 化工进展, 2022, 41(6): 3279-3292. |
LI Zhibin, TANG Hui, LUO Dawei, et al. Progress in chemical recycling of waste PET and preparation of unsaturated polyester resins[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3279-3292. | |
51 | WANG Ying, LIU Yanjing, LI Xiyue, et al. Preparation of nano-Mg(OH)2 and its flame retardant and antibacterial modification on polyethylene terephthalate fabrics[J]. Polymers, 2022, 15(1): 7. |
52 | LI Na, LI Zhi, LIU Zhiqi, et al. Magnesium hydroxide micro-whiskers as super-reinforcer to improve fire retardancy and mechanical property of epoxy resin[J]. Polymer Composites, 2022, 43(4): 1996-2009. |
53 | ZHAO Jiangqi, ZHANG Ximu, TU Rui, et al. Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix[J]. Cellulose, 2014, 21(3): 1859-1872. |
54 | WANG Qilei. Thermo-oxidative ageing and stability studies of different magnesium hydroxide/glass fiber/nitrile butadiene rubber nano-composites[J]. Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials: Design and Applications, 2016, 230(1): 175-181. |
55 | STARK Nicole M, WHITE Robert H, MUELLER Scott A, et al. Evaluation of various fire retardants for use in wood flour-polyethylene composites[J]. Polymer Degradation and Stability, 2010, 95(9): 1903-1910. |
56 | Bi S, Song X. Esterified galactomannan mixed with Mg(OH)2 and Sb2O3 for making reinforced flame-retardant paper[J]. Chemistry and Industry of Forest Products, 2022, 42(3): 97-104. |
57 | LI Xiujuan, GUO Ruisong, QIAN Xiaodong. Preparation and absorption carbon monoxide properties of a novel flame retardants based fire-fighting foam[J]. Frontiers in Materials, 2021, 8: 646509. |
58 | LAZAR Simone T, KOLIBABA Thomas J, GRUNLAN Jaime C. Flame-retardant surface treatments[J]. Nature Reviews Materials, 2020, 5(4): 259-275. |
59 | QIU Xiaoqing, LI Zhiwei, LI Xiaohong, et al. Flame retardant coatings prepared using layer by layer assembly: A review[J]. Chemical Engineering Journal, 2018, 334: 108-122. |
60 | LIU Bowen, ZHAO Haibo, WANG Yuzhong. Advanced flame-retardant methods for polymeric materials[J]. Advanced Materials, 2022, 34(46): 2107905. |
[1] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
[2] | BIAN Weibai, ZHANG Ruixuan, PAN Jianming. Research progress on preparation methods of inorganic metal lithium ion sieve materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4173-4186. |
[3] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
[4] | SUN Xinru, ZHANG Qiuyi, ZHUO Jiankun, YANG Run, YAO Qiang. Research progress of CaCl2 composite thermochemical heat storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4506-4515. |
[5] | SHI Jiabo, ZHANG Yuxuan, CHEN Xuefeng, TAN Jiaojun. Preparation and oil-water separation property of tannic acid-nanoclay synergistically modified collagen fiber-based porous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4624-4629. |
[6] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
[7] | WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856. |
[8] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[9] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[10] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
[11] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[12] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[13] | HUANG Kun, XU Ming, WU Xiujuan, PEI Sijia, LIU Dawei, MA Xiaoxun, XU Long. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493. |
[14] | XIONG Wenting, LUO Qiji, YAN Chungen. Silica-based aerogel materials and their preparation technology from a patent analysis [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1912-1922. |
[15] | PENG Lijia, WANG Yinlong, ZHAI Chen, WANG Qi, CHEN Xiaopeng, TONG Zhangfa. Co-production and modification of magnesium hydroxide and calcium carbonate by controlled carbonization of dolomite [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1981-1991. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |