Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2526-2543.DOI: 10.16085/j.issn.1000-6613.2023-2099
• New and renewable energy • Previous Articles
LIU Miao1(), JIAO Yingying1, DING Ling1, LI Chengcheng2, HE Ying3, SUN Liangliang3, HAO Qingqing1,2, CHEN Huiyong1,2, LUO Qunxing1,2()
Received:
2013-11-29
Revised:
2024-02-02
Online:
2024-06-15
Published:
2024-05-15
Contact:
LUO Qunxing
刘苗1(), 焦莹莹1, 丁玲1, 李城城2, 何颖3, 孙亮亮3, 郝青青1,2, 陈汇勇1,2, 罗群兴1,2()
通讯作者:
罗群兴
作者简介:
刘苗(1998—),女,硕士研究生,研究方向为生物质催化转化。E-mail:liumiao7@stumail.nwu.edu.cn。
基金资助:
CLC Number:
LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543.
刘苗, 焦莹莹, 丁玲, 李城城, 何颖, 孙亮亮, 郝青青, 陈汇勇, 罗群兴. 酸催化己糖脱水合成5-羟甲基糠醛:反应、分离和过程耦合[J]. 化工进展, 2024, 43(5): 2526-2543.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2099
反应体系 | 催化剂 | 反应溶剂 | 反应条件 | 催化性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
温度/℃ | 时间/h | XGlu/% | SHMF/% | YHMF/% | ||||
均相 | HCl+AlCl3 | H2O/仲丁基苯酚 | 170 | 0.7 | 91 | 68 | 62 | [ |
HCl+CrCl3 | H2O/THF | 140 | 3 | 95 | 62 | 59 | [ | |
[EMIM]Cl+CrCl2 | 1-乙基-3-甲基咪唑氯盐 | 100 | 3 | 99 | 69.7 | 70 | [ | |
HCl+NaCl | H2O-GVL | 140 | 1 | 96 | 64.5 | 62 | [ | |
CrCl3·6H2O | DES of TEAB | 130 | 0.25 | n. m. | n. m. | 76 | [ | |
均相-多相 | Sn-Beta+HCl | H2O-NaCl/丁醇-THF | 180 | 1 | 79 | 72 | 57 | [ |
Cr-CP+HCl | H2O-DMSO | 170 | 4 | 97.7 | 65.4 | 63.9 | [ | |
Cr-CP+H2SO4 | H2O-DMSO | 170 | 4 | 98.8 | 56.4 | 55.7 | [ | |
Cr-MIL-101+H4SiW12O40 | H2O-GVL | 140 | 8 | 92 | n. m. | 40 | [ | |
多相 | Nb-Beta | H2O-NaCl/MIBK | 180 | 12 | 97.4 | 84.3 | 82.1 | [ |
Cr-MIL-101-SO3H | H2O-GVL | 180 | 2 | 98 | 45.8 | 44.9 | [ | |
SO3H-NH-MCM-41 | H2O | 120 | 2 | n. m. | n. m. | 89 | [ | |
SnPCP@MnO2-PDA | DMSO | 150 | 5 | 92.2 | 60.5 | 55.8 | [ | |
SO3H-OAC | H2O-NaCl/THF | 160 | 3 | 93 | 99.9 | 93 | [ | |
SnO x /C | H2O-NaCl/THF | 180 | 2 | 92.1 | 91.3 | 84.1 | [ |
反应体系 | 催化剂 | 反应溶剂 | 反应条件 | 催化性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
温度/℃ | 时间/h | XGlu/% | SHMF/% | YHMF/% | ||||
均相 | HCl+AlCl3 | H2O/仲丁基苯酚 | 170 | 0.7 | 91 | 68 | 62 | [ |
HCl+CrCl3 | H2O/THF | 140 | 3 | 95 | 62 | 59 | [ | |
[EMIM]Cl+CrCl2 | 1-乙基-3-甲基咪唑氯盐 | 100 | 3 | 99 | 69.7 | 70 | [ | |
HCl+NaCl | H2O-GVL | 140 | 1 | 96 | 64.5 | 62 | [ | |
CrCl3·6H2O | DES of TEAB | 130 | 0.25 | n. m. | n. m. | 76 | [ | |
均相-多相 | Sn-Beta+HCl | H2O-NaCl/丁醇-THF | 180 | 1 | 79 | 72 | 57 | [ |
Cr-CP+HCl | H2O-DMSO | 170 | 4 | 97.7 | 65.4 | 63.9 | [ | |
Cr-CP+H2SO4 | H2O-DMSO | 170 | 4 | 98.8 | 56.4 | 55.7 | [ | |
Cr-MIL-101+H4SiW12O40 | H2O-GVL | 140 | 8 | 92 | n. m. | 40 | [ | |
多相 | Nb-Beta | H2O-NaCl/MIBK | 180 | 12 | 97.4 | 84.3 | 82.1 | [ |
Cr-MIL-101-SO3H | H2O-GVL | 180 | 2 | 98 | 45.8 | 44.9 | [ | |
SO3H-NH-MCM-41 | H2O | 120 | 2 | n. m. | n. m. | 89 | [ | |
SnPCP@MnO2-PDA | DMSO | 150 | 5 | 92.2 | 60.5 | 55.8 | [ | |
SO3H-OAC | H2O-NaCl/THF | 160 | 3 | 93 | 99.9 | 93 | [ | |
SnO x /C | H2O-NaCl/THF | 180 | 2 | 92.1 | 91.3 | 84.1 | [ |
吸附剂材料 | 吸附质 | 参考文献 | |||
---|---|---|---|---|---|
果糖 | HMF | 乙酰丙酸 | 甲酸 | ||
球形活性炭 | n. m. | Langmuir | n. m. | n. m. | [ |
颗粒活性炭 | n. m. | Freundlich | n. m. | n. m. | [ |
H-Beta | Henry | Redlich-Peterson | Redlich-Peterson | Freundlich | [ |
NU-1000 | 无吸附 | Langmuir | n. m. | n. m. | [ |
ZIF-8 | n. m. | Langmuir | n. m. | n. m. | [ |
HCP | Langmuir | Freundlich | Freundlich | Langmuir | [ |
Freundlich | Redlich-Peterson | Freundlich | Freundlich | ||
Redlich-Peterson | Redlich-Peterson | Freundlich | Redlich-Peterson | ||
H-PAP | n. m. | Langmuir | n. m. | n. m. | [ |
SY-01树脂 | n. m. | Langmuir | Langmuir | Langmuir | [ |
吸附剂材料 | 吸附质 | 参考文献 | |||
---|---|---|---|---|---|
果糖 | HMF | 乙酰丙酸 | 甲酸 | ||
球形活性炭 | n. m. | Langmuir | n. m. | n. m. | [ |
颗粒活性炭 | n. m. | Freundlich | n. m. | n. m. | [ |
H-Beta | Henry | Redlich-Peterson | Redlich-Peterson | Freundlich | [ |
NU-1000 | 无吸附 | Langmuir | n. m. | n. m. | [ |
ZIF-8 | n. m. | Langmuir | n. m. | n. m. | [ |
HCP | Langmuir | Freundlich | Freundlich | Langmuir | [ |
Freundlich | Redlich-Peterson | Freundlich | Freundlich | ||
Redlich-Peterson | Redlich-Peterson | Freundlich | Redlich-Peterson | ||
H-PAP | n. m. | Langmuir | n. m. | n. m. | [ |
SY-01树脂 | n. m. | Langmuir | Langmuir | Langmuir | [ |
1 | RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484. |
2 | CHHEDA Juben N, HUBER George W, DUMESIC James A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie International Edition, 2007, 46(38): 7164-7183. |
3 | SIKARWAR VINEET Singh, ZHAO Ming, Peter Clough, et al. An overview of advances in biomass gasification[J]. Energy & Environmental Science, 2016, 9(10): 2939-2977. |
4 | AKIEN Geoffrey R, QI Long, HORVÁTH Istvan T. Molecular mapping of the acid catalysed dehydration of fructose[J]. Chemical Communications, 2012, 48(47): 5850-5852. |
5 | FILICIOTTO Layla, BALU Alina M, ROMERO Antonio A, et al. Reconstruction of humins formation mechanism from decomposition products: A GC-MS study based on catalytic continuous flow depolymerizations[J]. Molecular Catalysis, 2019, 479: 5-164. |
6 | KUSTER B F M. 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture[J]. Starch-Stärke, 1990, 42(8): 314-321. |
7 | ROSENFELD Catherine, KONNERTH Johannes, Wilfried SAILER-KRONLACHNER, et al. Current situation of the challenging scale-up development of hydroxymethylfurfural production[J]. ChemSusChem, 2020, 13(14): 3544-3564. |
8 | ISTASSE Thibaut, RICHEL Aurore. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design[J]. RSC Advances, 2020, 10(40): 23720-23742. |
9 | ZHU Liangfang, FU Xing, HU Yexin, et al. Controlling the reaction networks for efficient conversion of glucose into 5-hydroxymethylfurfural[J]. ChemSusChem, 2020, 13(18): 4812-4832. |
10 | MEIER Sebastian. Mechanism and malleability of glucose dehydration to HMF: Entry points and water-induced diversions[J]. Catalysis Science & Technology, 2020, 10(6): 1724-1730. |
11 | VILLANUEVA Nicolas I, MARZIALETTI Teresita G. Mechanism and kinetic parameters of glucose and fructose dehydration to 5-hydroxymethylfurfural over solid phosphate catalysts in water[J]. Catalysis Today, 2018, 302: 100-107. |
12 | JADHAV Harishchandra, PEDERSEN Christian Marcus, Theis SØLLING, et al. 3-Deoxy-glucosone is an intermediate in the formation of furfurals from d-glucose[J]. ChemSusChem, 2011, 4(8): 1049-1051. |
13 | PAGAN-TORRES Yomaira J, WANG Tianfu, GALLO Jean Marcel R, et al. Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent[J]. ACS Catalysis, 2012, 2(6): 930-934. |
14 | CHOUDHARY Vinit, MUSHRIF Samir H, Christopher HO, et al. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. Journal of the American Chemical Society, 2013, 135(10): 3997-4006. |
15 | ZHAO Haibo, HOLLADAY Johnathan E, BROWN Heather, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597. |
16 | LI Minghao, LI Wenzhi, LU Yijuan, et al. High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system[J]. RSC Advances, 2017, 7(24): 14330-14336. |
17 | GUO Xusheng, ZHU Haoxiang, SI Yuxi, et al. Highly efficient and selective preparation of 5-hydroxymethylfurfural from concentrated carbohydrates using deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14579-14587. |
18 | NIKOLLA Eranda, Yuriy ROMÁN-LESHKOV, Manuel MOLINEr, et al. “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-Beta zeolite[J]. ACS Catalysis, 2011, 1(4): 408-410. |
19 | JIANG Nan, QI Wei, WU Zhongjie, et al. “One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid[J]. Catalysis Today, 2018, 302: 94-99. |
20 | Marta LARA-SERRANO, Silvia MORALES-DELAROSA, CAMPOS-MARTIN Jose M, et al. One-pot conversion of glucose into 5-hydroxymethylfurfural using MOFs and Brønsted-acid tandem catalysts[J]. Advanced Sustainable Systems, 2022, 6(5): 2100444. |
21 | CANDU Natalia, El FERGANI Magdi, VERZIU Marian, et al. Efficient glucose dehydration to HMF onto Nb-BEA catalysts[J]. Catalysis Today, 2019, 325: 109-116. |
22 | SU Ye, CHANG Ganggang, ZHANG Zhiguo, et al. Catalytic dehydration of glucose to 5-hydroxymethylfurfural with a bifunctional metal-organic framework[J]. AIChE Journal, 2016, 62(12): 4403-4417. |
23 | NIAKAN Mahsa, QIAN Chao, ZHOU Shaodong. Highly efficient one-pot conversion of glucose to 5-hydroxymethylfurfural over acid-base bifunctional MCM-41 mesoporous silica under mild aqueous conditions[J]. Energy & Fuels, 2023, 37(21): 16639-16647. |
24 | LI Ke, DU Mengmeng, JI Peijun. Multifunctional tin-based heterogeneous catalyst for catalytic conversion of glucose to 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5636-5644. |
25 | NAHAVANDI Milad, KASANNENI Tiruma, YUAN Zhong Shun Sean, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural using a sulfonated carbon-based solid acid catalyst: An experimental and numerical study[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 11970-11984. |
26 | WANG Ke, REZAYAN Armin, SI Lin Qi, et al. Highly efficient 5-hydroxymethylfurfural production from glucose over bifunctional SnO x /C catalyst[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11351-11360. |
27 | GUO Bin, YE Lin, TANG Gangfeng, et al. Effect of Brønsted/Lewis acid ratio on conversion of sugars to 5-hydroxymethylfurfural over mesoporous Nb and Nb-W oxides[J]. Chinese Journal of Chemistry, 2017, 35(10): 1529-1539. |
28 | LI Xiangcheng, PENG Kaihao, LIU Xiaohui, et al. Comprehensive understanding of the role of Brønsted and Lewis acid sites in glucose conversion into 5-hydromethylfurfural[J]. ChemCatChem, 2017, 9(14): 2739-2746. |
29 | 胡磊, 孙勇, 林鹿. 葡萄糖脱水制备5-羟甲基糠醛的研究进展[J]. 化工进展, 2011, 30(8): 1711-1716. |
HU Lei, SUN Yong, LIN Lu. Research progress on the preparation of 5-hydroxymethylfurfural from glucose dehydration[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1711-1716. | |
30 | COMBS Elliot, CINLAR Basak, Yomaira PAGAN-TORRES, et al. Influence of alkali and alkaline earth metal salts on glucose conversion to 5-hydroxymethylfurfural in an aqueous system[J]. Catalysis Communications, 2013, 30: 1-4. |
31 | ZHANG Ximing, MURRIA Priya, JIANG Yuan, et al. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. Green Chemistry, 2016, 18(19): 5219-5229. |
32 | ZHANG Ximing, HEWETSON Barron B, MOSIER Nathan S. Kinetics of maleic acid and aluminum chloride catalyzed dehydration and degradation of glucose[J]. Energy & Fuels, 2015, 29(4): 2387-2393. |
33 | SAJID Muhammad, BAI Yu Chen, LIU De Hua, et al. Conversion of glucose to 5-hydroxymethylfurfural by co-catalysis of p-toluenesulfonic acid (pTSA) and chlorides: A comparison based on kinetic modeling[J]. Waste and Biomass Valorization, 2021, 12(6): 3271-3286. |
34 | Dallas SWIFT T, NGUYEN Hannah, ANDERKO Andrzej, et al. Tandem Lewis/Brønsted homogeneous acid catalysis: Conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium( Ⅲ ) chloride and hydrochloric acid solution[J]. Green Chemistry, 2015, 17(10): 4725-4735. |
35 | MUSHRIF Samir H, VARGHESE Jithin J, VLACHOS Dionisios G. Insights into the Cr(Ⅲ) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19564-19572. |
36 | PIDKO Evgeny A, DEGIRMENCI Volkan, VAN Santen Rutger A, et al. Coordination properties of ionic liquid-mediated chromium(Ⅱ) and copper(Ⅱ) chlorides and their complexes with glucose[J]. Inorganic Chemistry, 2010, 49(21): 10081-10091. |
37 | PIDKO Evgeny A, DEGIRMENCI Volkan, HENSEN Emiel J M. On the mechanism of Lewis acid catalyzed glucose transformations in ionic liquids[J]. ChemCatChem, 2012, 4(9): 1263-1271. |
38 | ZHANG Yanmei, PIDKO Evgeny A, HENSEN Emiel J M. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids[J]. Chemistry-A European Journal, 2011, 17(19): 5281-5288. |
39 | JIA Songyan, XU Zhanwei, ZHANG Z Conrad. Catalytic conversion of glucose in dimethylsulfoxide/water binary mix with chromium trichloride: Role of water on the product distribution[J]. Chemical Engineering Journal, 2014, 254: 333-339. |
40 | TAARNING Esben, Irantzu SÁDABA, JENSEN Pernille R, et al. Discovery and exploration of the efficient acyclic dehydration of hexoses in dimethyl sulfoxide/water[J]. ChemSusChem, 2019, 12(23): 5086-5091. |
41 | SEZGIN Esra, KEÇECI Merve Esen, AKMAZ Solmaz, et al. Heterogeneous Cr-zeolites (USY and Beta) for the conversion of glucose and cellulose to 5-hydroxymethylfurfural (HMF)[J]. Cellulose, 2019, 26(17): 9035-9043. |
42 | BHANJA Piyali, MODAK Arindam, CHATTERJEE Sauvik, et al. Bifunctionalized mesoporous SBA-15: A new heterogeneous catalyst for the facile synthesis of 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2763-2773. |
43 | YAN Hongpeng, YANG Yu, TONG Dongmei, et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4 2-/ZrO2 and SO 4 2 - /ZrO2-Al2O3 solid acid catalysts[J]. Catalysis Communications, 2009, 10(11): 1558-1563. |
44 | 苏叶, 鲍宗必, 张治国, 等. L酸/B酸可调的磺酸功能化MIL-101(Cr)材料催化葡萄糖脱水制备5-羟甲基糠醛[J].化工学报, 2016, 67(7): 2799-2807. |
SU Ye, BAO Zongbi, ZHANG Zhiguo, et al. L-acid/B-acid tunable sulfonic acid functionalized MIL-101(Cr) material catalyzed glucose dehydration to prepare 5-hydroxymethylfurfural[J]. Journal of Chemical Engineering, 2016, 67(7): 2799-2007. | |
45 | MOLINER Manuel, Yuriy ROMÁN-LESHKOV, DAVIS Mark E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences, 2010, 107(14): 6164-6168. |
46 | Dallas SWIFT T, NGUYEN Hannah, ERDMAN Zachary, et al. Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite Beta[J]. Journal of Catalysis, 2016, 333: 149-161. |
47 | ZHANG Tingwei, WEI Haiying, JIN Yongcan, et al. Dehydration of glucose to 5-hydroxymethylfurfural over Sn-containing dendritic mesoporous silica[J]. Chemical Engineering Journal, 2023, 454: 140415. |
48 | REZAYAN Armin, WANG Ke, NIE Ren Feng, et al. Synthesis of bifunctional tin-based silica-carbon catalysts, Sn/KIT-1/C, with tunable acid sites for the catalytic transformation of glucose into 5-hydroxymethylfurfural[J]. Chemical Engineering Journal, 2022, 429: 132261. |
49 | OTOMO Ryoichi, YOKOI Toshiyuki, KONDO Junko N, et al. Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural[J]. Applied Catalysis A: General, 2014, 470: 318-326. |
50 | WANG Zhongxu, LU Peng, Li Shuo, et al. A surface modification strategy to prepare hierarchical Beta molecular sieves for glucose dehydration[J]. Dalton Transactions, 2023, 52(38): 13507-13516. |
51 | OTOMO Ryoichi, YOKOI Toshiyuki, TATSUMI Takashi. OSDA-free zeolite Beta with high aluminum content efficiently catalyzes a tandem reaction for conversion of glucose to 5-hydroxymethylfurfural[J]. ChemCatChem, 2015, 7(24): 4180-4187. |
52 | LI Liang, DING Jianghong, JIANG Jingang, et al. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts[J]. Chinese Journal of Catalysis, 2015, 36(6): 820-828. |
53 | PENG Wun-Huie, LEE Yin-Ying, WU Connie, et al. Acid-base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion[J]. Journal of Materials Chemistry, 2012, 22(43): 23181-23185. |
54 | ZHU Xiaofan, LIANG Qiqi, FU Yan, et al. Efficient synthesis of 5-hydroxymethylfurfural by MCM-41 modified with multiple acid sites[J]. Sustainable Energy & Fuels, 2023, 7(8): 2003-2011. |
55 | SARAVANAMURUGAN Shunmugavel, PANIAGUA Marta, MELERO Juan A, et al. Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and agueous media[J]. Journal of the American Chemical Society, 2013, 135(14): 5246-5249. |
56 | HUANG Fangmin, SU Yuwen, TAO Yu, et al. Preparation of 5-hydroxymethylfurfural from glucose catalyzed by silica-supported phosphotungstic acid heterogeneous catalyst[J]. Fuel, 2018, 226: 417-422. |
57 | ALJAMMAL Noor, JABBOUR Christia, THYBAUT Joris W, et al. Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects[J]. Coordination Chemistry Reviews, 2019, 401: 213064. |
58 | LIAO Yute, MATSAGAR Babasanheb M, WU Kevin C W. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13628-13643. |
59 | FANG Ruiqi, DHAKSHINAMOORTHY Amarajothi, LI Yingwei. Metal organic frameworks for biomass conversion[J]. Chemical Society Reviews, 2020, 49(11): 3638-3687. |
60 | CORMA Avelino, DOMINE Marcelo E, NEMETH Laszlo, et al. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (meerwein-ponndorf-verley reaction)[J]. Journal of the American Chemical Society, 2002, 124(13): 3194-3195. |
61 | RICARDO Bermejo-Deval, ASSARY Rajeev S, NIKOLLA Eranda, et al. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 9727-9732. |
62 | FLEYS Matthieu, THOMPSON Robert W, MACDONALD John C. Comparison of the behavior of water in silicalite and dealuminated zeolite Y at different temperatures by molecular dynamic simulations[J]. The Journal of Physical Chemistry B, 2004, 108(32): 12197-12203. |
63 | DEMONTIS P, STARA G, SUFFRITTI G B. Behavior of water in the hydrophobic zeolite silicalite at different temperatures. A molecular dynamics study[J]. The Journal of Physical Chemistry B, 2003, 107(18): 4426-4436. |
64 | RICARDO Bermejo-Deval, MARAT Orazov, RAJAMANI Gounder, et al. Active sites in Sn-Beta for glucose isomerization to fructose and epimerization to mannose[J]. ACS Catalysis, 2014, 4(7): 2288-2297. |
65 | CORDON Michael J, HALL Jacklyn N, HARRIS James W, et al. Deactivation of Sn-Beta zeolites caused by structural transformation of hydrophobic to hydrophilic micropores during aqueous-phase glucose isomerization[J]. Catalysis Science & Technology, 2019, 9(7): 1654-1668. |
66 | RICARDO Alamillo, Crisci ANTHONY J, JEAN Marcel R Gallo, et al. A tailored microenvironment for catalytic biomass conversion in inorganic-organic nanoreactors[J]. Angewandte Chemie International Edition, 2013, 52(39): 10349-10351. |
67 | LUO Qunxing, ZHANG Yuanbao, QI Long, et al. Glucose isomerization and epimerization over metal-organic frameworks with single-site active centers[J]. ChemCatChem 2019, 11(7): 1903-1909. |
68 | MARTA Lara-Serrano, SILVIA Morales-delaRosa, Campos-Martin JOSE M, et al. Isomerization of glucose to fructose catalyzed by metal-organic frameworks[J]. Sustainable Energy & Fuels, 2021, 5(15): 3847-3857. |
69 | GEORGE Akiyama, RYOTARO Matsuda, HIROSHI Sato, et al. Catalytic glucose isomerization by porous coordination polymers with open metal sites[J]. Chemistry—An Asian Journal, 2014, 9(10): 2772-2777. |
70 | VAN PUTTEN Robert-Jan, VAN DER WAAL Jan C, DE JONG Ed, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113(3): 1499-1597. |
71 | LAI Fengjiao, YAN Feng, Wang Pengju, et al. Efficient conversion of carbohydrates and biomass into furan compounds by chitin/Ag co-modified H3PW12O40 catalysts[J]. Journal of Cleaner Production, 2021, 316: 128243. |
72 | ENOMOTO Kota, HOSOYA Takashi, MIYAFUJI Hisashi. High-yield production of 5-hydroxymethylfurfural from D-fructose, D-glucose, and cellulose by its in situ removal from the reaction system[J]. Cellulose, 2018, 25(4): 2249-2257. |
73 | WEI Zuojun, LIU Yingxin, THUSHARA Dilantha, et al. Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt-ionic liquid[J]. Green Chemistry, 2012, 14(4): 1220-1226. |
74 | HSIAO Yungwei, ANASTASOPOULOU Aikaterini, IERAPETRITOU Marianthi, et al. Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution[J]. Green Chemistry, 2021, 23(11): 4008-4023. |
75 | 高志谨, 李永祥, 胡耀平. 低沸点溶剂中果糖制备呋喃衍生物的研究进展[J]. 化工进展, 2017, 36(3): 1052-1058. |
GAO Zhijin, LI Yongxiang, HU Yaoping. Research progress on the preparation of furan derivatives from fructose in low boiling solvents[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1052-1058. | |
76 | HU Lie, JIANG Yetao, WU Zhen, et al. State-of-the-art advances and perspectives in the separation of biomass-derived 5-hydroxymethylfurfural[J]. Journal of Cleaner Production, 2020, 276: 124219. |
77 | ESTEBAN Jesus, VORHOLT Andreas J, LEITNER Walter. An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: A rational selection of solvents using COSMO-RS and selection guides[J]. Green Chemistry, 2020, 22(7): 2097-2128. |
78 | SAHA Basudeb, ABU-OMAR Mahdi M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry, 2014, 16(1): 24-38. |
79 | 石宁, 刘琪英, 王铁军, 等. 葡萄糖催化脱水制取5-羟甲基糠醛研究进展[J]. 化工进展, 2012, 31(4): 792-800. |
SHI Ning, LIU Qiying, Wang Tiejun, et al. Research progress on catalytic dehydration of glucose to produce 5-hydroxymethylfurfural[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 792-800. | |
80 | VINKE P, VAN BEKKUM H. The dehydration of fructose towards 5-hydroxymethylfurfural using activated carbon as adsorbent[J]. Starch-Stärke, 1992, 44(3): 90-96. |
81 | RAJABBEIGI Nafiseh, RANJAN Rajiv, TSAPATSIS Michael. Selective adsorption of HMF on porous carbons from fructose/DMSO mixtures[J]. Microporous and Mesoporous Materials, 2012, 158: 253-256. |
82 | YOO Won Cheol, RAJABBEIGI Nafiseh, MALLON Elizabeth E, et al. Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents[J]. Microporous and Mesoporous Materials, 2014, 184: 72-82. |
83 | SCHUTE Kai, LOUVEN Yannik, DETONI Chaline, et al. Selective liquid phase adsorption of biogenic HMF on hydrophobic spherical activated carbons[J]. Chemie Ingenieur Technik, 2016, 88(3): 355-362. |
84 | Rolf SCHÖLLNER, EINICKE Wolf-Dietrich, Bärbel GLÄSER. Liquid-phase adsorption of monosaccharide-water mixtures on X and Y zeolites[J]. Journal of the Chemical Society Faraday Transactions, 1993, 89(11): 1871-1876. |
85 | RANJAN Rajiv, THUST Stefan, GOUNARIS Chrysanthos E, et al. Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery[J]. Microporous and Mesoporous Materials, 2009, 122(1): 143-148. |
86 | Marta LEÓN, Dallas SWIFT T, NIKOLAKIS Vladimiros, et al. Adsorption of the compounds encountered in monosaccharide dehydration in zeolite Beta[J]. Langmuir, 2013, 29(22): 6597-6605. |
87 | XIONG Ruichang, Marta LEÓN, NIKOLAKIS Vladimiros, et al. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: Experiment and simulation[J]. ChemSusChem, 2014, 7(1): 236-244. |
88 | Pia KÜSGENS, ROSE Marcus, SENKOVSKA Irena, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330. |
89 | AMROUCHE Hedi, CRETON Benoit, SIPERSTEIN Flor, et al. Prediction of thermodynamic properties of adsorbed gases in zeolitic imidazolate frameworks[J]. RSC Advances, 2012, 2(14): 6028-6035. |
90 | JIN Hua, LI Yanshuo, LIU Xinlei, et al. Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks[J]. Chemical Engineering Science, 2015, 124: 170-178. |
91 | CAO Na, WANG Honglei, BAN Yujie, et al. Tuning of delicate host-guest interactions in hydrated MIL-53 and functional variants for furfural capture from aqueous solution[J]. Angewandte Chemie International Edition, 2021, 60(3): 1629-1634. |
92 | YABUSHITA Mizuho, LI Peng, KOBAYASHI Hirokazu, et al. Complete furanics-sugar separations with metal-organic framework NU-1000[J]. Chemical Communications, 2016, 52(79): 11791-11794. |
93 | XIE Yi, PHELPS Diana, LEE Chong-Ho, et al. Comparison of two adsorbents for sugar recovery from biomass hydrolyzate[J]. Industrial & Engineering Chemistry Research, 2005, 44(17): 6816-6823. |
94 | HATTORI Hideo, TAJIMA Kiyohiko, CHANG H Ted, et al. Selective adsorption of a substance derived from saccharides onto synthetic resin particles[J]. Adsorption, 2005, 11(1): 917-920. |
95 | IJZER Anne Corine, VRIEZEKOLK Erik, ROLEVINK Erik, et al. Performance analysis of aromatic adsorptive resins for the effective removal of furan derivatives from glucose[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(1): 101-109. |
96 | IJZER Anne Corine, VRIEZEKOLK Erik, ÐEKIC Zivkovic Tanja, et al. Adsorption kinetics of DowexTM OptiporeTM L493 for the removal of the furan 5-hydroxymethylfurfural from sugar[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(1): 96-104. |
97 | ZHENG Jiayi, PAN Baoying, XIAO Jiangxiong, et al. Experimental and mathematical simulation of noncompetitive and competitive adsorption dynamic of formic acid-levulinic acid-5-hydroxymethylfurfural from single, binary, and ternary systems in a fixed-bed column of SY-01 resin[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8518-8528. |
98 | SAINIO Tuomo, TURKU Irina, HEINONEN Jari. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(10): 6048-6057. |
99 | DETONI Chaline, GIERLICH Christian Henning, ROSE Marcus, et al. Selective liquid phase adsorption of 5-hydroxymethylfurfural on nanoporous hyper-cross-linked polymers[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2407-2415. |
100 | ZHANG Yuanbao, LUO Qunxing, LU Meiheng, et al. Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration[J]. Chemical Engineering Journal, 2019, 358: 467-479. |
101 | ROLLY GONZALES Ralph, HONG Yongseok, PARK Jonghun, et al. Kinetics and equilibria of 5-hydroxymethylfurfural (5-HMF) sequestration from algal hydrolyzate using granular activated carbon[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(4): 1157-1163. |
102 | ZHENG Jiayi, HE Xianda, CAI Chiliu, et al. Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly(divinylbenzene-co-ethyleneglycoldimethacrylate) resin[J]. Chemosphere, 2020, 239: 124732. |
103 | 张元宝. 中空聚合物对5-羟甲基糠醛选择吸附的构-效关系及机制[D]. 西安: 陕西师范大学, 2019. |
ZHANG Yuanbao. Structure activity relationship and mechanism of hollow polymer for selective adsorption of 5-hydroxymethylfurfural[D]. Xi’an: Shaanxi Normal University, 2019. | |
104 | 赵宇, 石琪, 董晋湘. ZIFs椭圆形孔窗的精细调控及糠醛/5-羟甲基糠醛吸附分离性能研究[J]. 化工学报, 2021, 72(1): 555-568, 633. |
ZHAO Yu, SHI Qi, DONG Jinxiang. Fine tuning of ZIFs elliptical pore windows and study on the adsorption and separation performance of furfural/5-hydroxymethylfurfural J]. Journal of Chemical Engineering, 2021, 72(1): 555-568, 633. | |
105 | 彭浩, 赵宇, 王静, 等. 憎水性ZIFs对糠醛和5-羟甲基糠醛的吸附分离性能[J]. 太原理工大学学报, 2019, 50(4): 444-452. |
PENG Hao, ZHAO Yu, WANG Jing, et al. The adsorption and separation performance of hydrophobic ZIFs for furfural and 5-hydroxymethylfurfural[J]. Journal of Taiyuan University of Technology, 2019, 50(4): 444-452. | |
106 | BLUMENTHAL Lena C, JENS Christian M, Jörn ULBRICH, et al. Systematic identification of solvents optimal for the extraction of 5-hydroxymethylfurfural from aqueous reactive solutions[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1): 228-235. |
107 | Yuriy ROMÁN-LESHKOV, CHHEDA Juben, DUMESIC James A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933. |
108 | SUN Xiaofu, LIU Zhenghui, XUE Zhimin, et al. Extraction of 5-HMF from the conversion of glucose in ionic liquid [Bmim]Cl by compressed carbon dioxide[J]. Green Chemistry, 2015, 17(5): 2719-2722. |
109 | Yuriy ROMÁN-LESHKOV, DUMESIC James A. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts[J]. Topics in Catalysis, 2009, 52(3): 297-303. |
110 | MOHAMMAD Sultan, HELD Christoph, ALTUNTEPE Emrah, et al. Influence of salts on the partitioning of 5-hydroxymethylfurfural in water/MIBK[J]. The Journal of Physical Chemistry B, 2016, 120(16): 3797-3808. |
111 | TORRES Aan I, DAOUTIDIS Prodromos, TSAPATSIS Michael. Continuous production of 5-hydroxymethylfurfural from fructose: A design case study[J]. Energy & Environmental Science, 2010, 3(10): 1560-1572. |
112 | WANG Zhaoxing, BHATTACHARYYA Souryadeep, VLACHOS Dionisios G. Solvent selection for biphasic extraction of 5-hydroxymethylfurfural via multiscale modeling and experiments[J]. Green Chemistry, 2020, 22(24): 8699-8712. |
113 | Dallas SWIFT T, BAGIA Christina, NIKOLAKIS Vladimiros, et al. Reactive adsorption for the selective dehydration of sugars to furans: Modeling and experiments[J]. AIChE Journal, 2013, 59(9): 3378-3390. |
114 | DORNATH Paul, FAN Wei. Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent[J]. Microporous and Mesoporous Materials, 2014, 191: 10-17. |
115 | WANG Yanhong, FAN Lijiao, XIAO Liqun, et al. Role of reaction adsorption on the production of 5-hydroxymethylfurfural from fructose under microwave hydrothermal process[J]. Fuel, 2023, 340. |
116 | LIU Xinlei, JIN Hua, LI Yanshuo, et al. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation[J]. Journal of Membrane Science, 2013, 428: 498-506. |
117 | JIN Hua, LIU Xinlei, BAN Yujie, et al. Conversion of xylose into furfural in a MOF-based mixed matrix membrane reactor[J]. Chemical Engineering Journal, 2016, 305: 12-18. |
118 | DIETZ Carin H J T, KROON Maaike C, DI Stefano Michela, et al. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane[J]. Faraday Discussions, 2018, 206: 77-92. |
119 | QIN Fan, LI Shufeng, QIN Peiyong, et al. A PDMS membrane with high pervaporation performance for the separation of furfural and its potential in industrial application[J]. Green Chemistry, 2014, 16(3): 1262-1273. |
120 | WANG Alex, BALSARA Nitash P, BELL Alexis T. Continuous pervaporation-assisted furfural production catalyzed by CrCl3 [J]. Green Chemistry, 2018, 20(12): 2903-2912. |
121 | WANG Alex, BALSARA Nitash P, BELL Alexis T. Pervaporation-assisted catalytic conversion of xylose to furfural[J]. Green Chemistry, 2016, 18(14): 4073-4085. |
[1] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
[2] | HUANG Kun, XU Ming, WU Xiujuan, PEI Sijia, LIU Dawei, MA Xiaoxun, XU Long. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493. |
[3] | SHI Liu, HU Zhenzhong, LI Xian, SUN Yiming, TONG Shan, LIU Xianzhe, GUO Li, LIU Hao, PENG Bing, LI Shuo, LUO Guangqian, YAO Hong. Gas-pressurized torrefaction of biomass: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2494-2511. |
[4] | FENG Feifei, TIAN Bin, MA Pengfei, WEI Jianxin, XU Long, TIAN Yuanyu, MA Xiaoxun. Research progress on mechanism and methods of lignin separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2512-2525. |
[5] | FAN Wenxuan, XU Shuangping, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress on polymeric membranes containing fluorenyl, imide and naphthyl groups for gas separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1897-1911. |
[6] | HE Lin, HE Changqing, SUI Hong. Prospects for the creation of novel interfacial separation materials driven by artificial intelligence [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1649-1654. |
[7] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[8] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[9] | GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850. |
[10] | JIN Binhao, ZHU Xiaoqian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, SU Baogen, YANG Qiwei. Advances in adsorbents for aromatics/cycloalkanes separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881. |
[11] | YANG Dongxiao, XIONG Qizhao, WANG Yi, CHEN Yang, LI Libo, LI Jinping. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896. |
[12] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[13] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[14] | ZHAO Guoke, ZHANG Yang, LIU Yiqun. Membrane technologies for monovalent/divalent cation separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1363-1373. |
[15] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |