Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1436-1445.DOI: 10.16085/j.issn.1000-6613.2023-0494
• Materials science and technology • Previous Articles
YAN Yu1(), XIA Xin1, LUO Junpeng1, LIU Dapeng1,2, QIAN Feiyue1,2()
Received:
2023-03-30
Revised:
2023-06-30
Online:
2024-04-11
Published:
2024-03-10
Contact:
QIAN Feiyue
严昱1(), 夏芯1, 骆俊鹏1, 刘大朋1,2, 钱飞跃1,2()
通讯作者:
钱飞跃
作者简介:
严昱(1999—),女,硕士研究生,研究方向为环境污染控制理论与技术。E-mail:iyanyu99@163.com。
基金资助:
CLC Number:
YAN Yu, XIA Xin, LUO Junpeng, LIU Dapeng, QIAN Feiyue. Effects of peroxide types on the removal of anti-inflammatory medicines in water with rGO/CNTs catalytic membranes[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1436-1445.
严昱, 夏芯, 骆俊鹏, 刘大朋, 钱飞跃. 氧化剂类型对rGO/CNTs催化膜去除水中消炎药成分的影响[J]. 化工进展, 2024, 43(3): 1436-1445.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0494
水样 | DOC①/mg·L-1 | SUVA② | Cl-/mg·L-1 | HCO | pH |
---|---|---|---|---|---|
DW | 0.16±0.07 | 0.107 | 未检出 | 未检出 | 7.00±0.03 |
TW | 3.24±0.23 | 0.463 | 7.02±0.61 | 13.41±1.27 | 7.02±0.10 |
SW | 7.12±0.57 | 0.913 | 5.48±1.67 | 15.33±2.05 | 8.39±0.14 |
水样 | DOC①/mg·L-1 | SUVA② | Cl-/mg·L-1 | HCO | pH |
---|---|---|---|---|---|
DW | 0.16±0.07 | 0.107 | 未检出 | 未检出 | 7.00±0.03 |
TW | 3.24±0.23 | 0.463 | 7.02±0.61 | 13.41±1.27 | 7.02±0.10 |
SW | 7.12±0.57 | 0.913 | 5.48±1.67 | 15.33±2.05 | 8.39±0.14 |
1 | LU Ping, FANG Yao, BARVOR J, et al. Review of antibiotic pollution in the Seven Watersheds in China[J]. Polish Journal of Environmental Studies, 2019, 28(6): 4045-4055. |
2 | HUANG Fuyang, CHEN Linpeng, ZHANG Chong, et al. Prioritization of antibiotic contaminants in China based on decennial national screening data and their persistence, bioaccumulation and toxicity[J]. Science of the Total Environment, 2022, 806: 150636. |
3 | 鲁京慧, 吴丽娟. 联磺甲氧苄啶治疗耐碳青霉烯肺炎克雷伯杆菌血流感染1例[J]. 中国医药科学, 2016, 6(14): 226-228. |
LU Jinghui, WU Lijuan. A Case: Sulfamethoxazole, sulfadiazine and trimethoprim tablets treatment carbapenem-resistant Klebsiella pneumoniae bloodstream infection[J]. China Medicine and Pharmacy, 2016, 6(14): 226-228. | |
4 | CHRISTOU A, KARAOLIA P, HAPESHI E, et al. Long-term wastewater irrigation of vegetables in real agricultural systems: Concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment[J]. Water Research, 2017, 109: 24-34. |
5 | ZHENG Wentian, LIU Yanbiao, LIU Wen, et al. A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants[J]. Water Research, 2021, 194: 116961. |
6 | SUN Xianbo, HE Weiyu, YANG Tao, et al. Ternary TiO2/WO3/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: Degradation mechanism and toxicity evaluation[J]. Chemical Engineering Journal, 2021, 412: 128679. |
7 | YU Jiangfang, FENG Haopeng, TANG Lin, et al. Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring[J]. Progress in Materials Science, 2020, 111: 100654. |
8 | CHEN Xiao, Wen-Da OH, Teik-Thye LIM. Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms[J]. Chemical Engineering Journal, 2018, 354: 941-976. |
9 | XIA Xin, LUO Junpeng, LIU Dapeng, et al. Metal-free graphene-based catalytic membranes for persulfate activation toward organic pollutant removal: A review[J]. Environmental Science and Pollution Research International, 2022, 29(50): 75184-75202. |
10 | PEDROSA M, DRAZIC G, TAVARES P B, et al. Metal-free graphene-based catalytic membrane for degradation of organic contaminants by persulfate activation[J]. Chemical Engineering Journal, 2019, 369: 223-232. |
11 | CHEN Xianfu, QIU Minghui, DING Hao, et al. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification[J]. Nanoscale, 2016, 8(10): 5696-5705. |
12 | HUANG Huimin, SHENG Jiayi, QIAN Feiyue, et al. Effects of graphene oxide incorporation on the mat structure and performance of carbon nanotube composite membranes[J]. Research on Chemical Intermediates, 2019, 45(2): 533-548. |
13 | LUO Junpeng, LIU Tingting, QIAN Feiyue, et al. Boosting non-radical oxidation in peroxydisulfate activation with carbonaceous catalytic membranes by coupling structural defects and nitrogen doping sites[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108101. |
14 | LIU Yatao, LIN Quan, GUO Yuanqing, et al. The nitrogen-doped multi-walled carbon nanotubes modified membrane activated peroxymonosulfate for enhanced degradation of organics and membrane fouling mitigation in natural waters treatment[J]. Water Research, 2022, 209: 117960. |
15 | LIU Yanbiao, YU Ling, CHOON Ong Nam, et al. Nitrogen-doped graphene nanosheets as reactive water purification membranes[J]. Nano Research, 2016, 9(7): 1983-1993. |
16 | CRUZ-ALCALDE A, LÓPEZ-VINENT N, RIBEIRO R S, et al. Persulfate activation by reduced graphene oxide membranes: Practical and mechanistic insights concerning organic pollutants abatement[J]. Chemical Engineering Journal, 2022, 427: 130994. |
17 | 郭朋举, 何小波, 银凤翔. 电催化氮还原合成氨MOF基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1797-1810. |
GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. | |
18 | KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561. |
19 | SHENG Jiayi, YIN Honggui, QIAN Feiyue, et al. Reduced graphene oxide-based composite membranes for in-situ catalytic oxidation of sulfamethoxazole operated in membrane filtration[J]. Separation and Purification Technology, 2020, 236: 116275. |
20 | 陈卫, 袁哲, 陶辉, 等. SUVA值与超滤膜污染的关系[J]. 华中科技大学学报(自然科学版), 2011, 39(2): 129-132. |
CHEN Wei, YUAN Zhe, TAO Hui, et al. Relationship between SUVA value and ultrafiltration pollution[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(2): 129-132. | |
21 | LIU Haoyu, LIU Yani, TANG Lin, et al. Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate[J]. Science of the Total Environment, 2020, 745: 141095. |
22 | QIAN Feiyue, LUO Junpeng, YIN Honggui, et al. Carbonaceous composite membranes for peroxydisulfate activation to remove sulfamethoxazole in a real water matrix[J]. Chemosphere, 2022, 288: 132597. |
23 | QIAN Feiyue, YIN Honggui, LIU Feng, et al. The in situ catalytic oxidation of sulfamethoxazole via peroxydisufate activation operated in a NG/rGO/CNTs composite membrane filtration[J]. Environmental Science and Pollution Research, 2021, 28(21): 26828-26839. |
24 | GAO Shiqian, GUO Yutong, LI Xinyue, et al. Magnetic solid phase extraction of sulfonamides based on carboxylated magnetic graphene oxide nanoparticles in environmental waters[J]. Journal of Chromatography A, 2018, 1575: 1-10. |
25 | 魏丽娟, 任庆贤, 宁春欢. 系数倍率双波长紫外分光光度法测定复方磺胺对甲氧嘧啶钠注射液中TMP的含量[J]. 中国兽药杂志, 2002, 36(11): 30-31. |
WEI Lijuan, REN Qingxian, NING Chunhuan. Determination of TMP in compound sulfamonomethoxine sodium injection by dual-wavelength ultraviolet spectrophotometry with coefficient ratio[J]. Chinese Journal of Veterinary Drug, 2002, 36(11): 30-31. | |
26 | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
27 | XIE Zhihui, HE Chuanshu, ZHOU Hongyu, et al. Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS[J]. Environmental Science & Technology, 2022, 56(12): 8784-8795. |
28 | 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO[J]. 物理学报, 2013, 62(3): 265-272. |
SUN Jianping, MIAO Yingmeng, CAO Xiangchun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd[J]. Acta Physica Sinica, 2013, 62(3): 265-272. | |
29 | LEE Jaesang, VON GUNTEN Urs, KIM Jae-Hong. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. |
30 | SU Pei, ZHOU Minghua, LU Xiaoye, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in situ degradation of organic pollutant[J]. Applied Catalysis B: Environmental, 2019, 245: 583-595. |
31 | GONG Bo, KU Calvin, YU Hanqing, et al. Predicting the mechanisms for H2O2 activation and phenol oxidation catalyzed by modified graphene-based systems using density functional theory[J]. ACS Applied Materials & Interfaces, 2022, 14(31): 35682-35693. |
32 | WANG Xiaobo, QIN Yanlei, ZHU Lihua, et al. Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: Synergistic effect between adsorption and catalysis[J]. Environmental Science & Technology, 2015, 49(11): 6855-6864. |
33 | REN Wei, CHENG Cheng, SHAO Penghui, et al. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes[J]. Environmental Science & Technology, 2022, 56(1): 78-97. |
34 | YANG Hailan, YE Shujing, WANG Han, et al. Insight into disinfection byproduct formation potential of aged biochar and its effects during chlorination[J]. Journal of Environmental Management, 2022, 317: 115437. |
35 | ZENG Huiping, LI Jianxue, XU Jiaxin, et al. Magnetic biochar based on platanus leaves and iron sludge for persulfate activation and catalytic degradation of tetracycline[J]. Journal of Cleaner Production, 2022, 370: 133336. |
36 | ADIL S, KIM Woong Sub, KIM Tae Hyeong, et al. Defective, oxygen-functionalized multi-walled carbon nanotubes as an efficient peroxymonosulfate activator for degradation of organic pollutants[J]. Journal of Hazardous Materials, 2020, 396: 122757. |
37 | LI Oi Lun, PRABAKAR K, KANEKO A, et al. Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts[J]. Catalysis Today, 2019, 337: 102-109. |
38 | YANG Shengjiong, XU Shengshuo, TONG Jiayao, et al. Overlooked role of nitrogen dopant in carbon catalysts for peroxymonosulfate activation: Intrinsic defects or extrinsic defects?[J]. Applied Catalysis B: Environmental, 2021, 295: 120291. |
39 | CHEN Hao, CARROLL K C. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene[J]. Environmental Pollution, 2016, 215: 96-102. |
40 | TANG Lin, LIU Yani, WANG Jiajia, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism[J]. Applied Catalysis B: Environmental, 2018, 231: 1-10. |
41 | LI Hao, LIU Yi, JIANG Feng, et al. Persulfate adsorption and activation by carbon structure defects provided new insights into ofloxacin degradation by biochar[J]. Science of the Total Environment, 2022, 806: 150968. |
42 | PENG Jiali, ZHOU Peng, ZHOU Hongyu, et al. Insights into the electron-transfer mechanism of permanganate activation by graphite for enhanced oxidation of sulfamethoxazole[J]. Environmental Science & Technology, 2021, 55(13): 9189-9198. |
43 | ZHANG Wen, LI Yang, FAN Xiaobin, et al. Synergy of nitrogen doping and structural defects on hierarchically porous carbons toward catalytic oxidation via a non-radical pathway[J]. Carbon, 2019, 155: 268-278. |
44 | DUAN Xiaoguang, AO Zhimin, SUN Hongqi, et al. Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: A mechanistic study[J]. Chemical Communications, 2015, 51(83): 15249-15252. |
45 | NIE Chunyang, DAI Zhenhua, LIU Wenjie, et al. Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: Boron-nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example[J]. Environmental Science: Nano, 2020, 7(7): 1899-1911. |
46 | DUAN Xiaoguang, AO Zhimin, ZHOU Li, et al. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation[J]. Applied Catalysis B: Environmental, 2016, 188: 98-105. |
47 | REN Wei, NIE Gang, ZHOU Peng, et al. The intrinsic nature of persulfate activation and N-doping in carbocatalysis[J]. Environmental Science & Technology, 2020, 54(10): 6438-6447. |
[1] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[2] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[3] | ZHAO Guoke, ZHANG Yang, LIU Yiqun. Membrane technologies for monovalent/divalent cation separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1363-1373. |
[4] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
[5] | WANG Bicong, PAN Dawei, XIE Rui, JU Xiaojie, LIU Zhuang, WANG Wei, CHU Liangyin. Fabrication of multi-enzyme@ZIF-8 for extraction of anthocyanins from black rice [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1403-1411. |
[6] | LIN Mingjie, LI Shiyang, MA Junmei, GAO Congjie, XUE Lixin. Preparation of polyamide/cellulose acetate thin-film composite forward osmosis membranes and optimization of phase inversion process parameters [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1418-1427. |
[7] | QIAN Junming, GUO Meng, REN Xiuxiu, YU Liang, ZHONG Jing, XU Rong. Fabrication of aromatic functionalized organosilica membranes and gas separation performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1428-1435. |
[8] | WANG Yansen, HOU Dandan, LI Changjin, QI Liya, WANG Chunyao, GUO Min, WANG Ying. Preparation and properties of graphene oxide/polyacrylic acid conductive and adhesive hydrogels [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1022-1032. |
[9] | YAO Fuchun, BI Yingying, TANG Chen, DU Minghui, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Analysis of the mass transfer mechanism in a hollow fiber membrane ozone contact reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1089-1097. |
[10] | LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163. |
[11] | LI Wenpeng, LIU Qing, YANG Zhirong, GAO Zhanpeng, WANG Jingtao, ZHOU Mingliang, ZHANG Jinli. Advances in efficient preparation of graphene by liquid-phase exfoliation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 215-231. |
[12] | WANG Yujie, ZHANG Yanmei, LUAN Jinyi, ZHAO Zhiping. Enzyme-catalyzed carbon sequestration processes and enhancement technologies [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 232-245. |
[13] | ZHANG Liang, MA Ji, HE Gaohong, JIANG Xiaobin, XIAO Wu. Determination and analysis of combined cooling and antisolvent crystallization metastable zone width of cefuroxime sodium with membrane regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 260-268. |
[14] | ZHONG Dinglei, HUANG Duo, YING Xiang, QIU Shoutian, WANG Yong. Preparation of multi-bore hollow-fiber membranes by selective swelling of melt-spun block copolymers [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 269-278. |
[15] | LI Yunqi, XIE Hanfei, CUI Lirui, LU Shanfu. Fabrication of Nafion membranes with patterned microwire arrays and fuel cell performances [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 320-327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |