Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5791-5804.DOI: 10.16085/j.issn.1000-6613.2023-1646
• Resources and environmental engineering • Previous Articles
QUAN Cui(), CHEN Changxiang, GAO Ningbo(), LU Lifang
Received:
2023-09-18
Revised:
2023-12-16
Online:
2024-10-29
Published:
2024-10-15
Contact:
GAO Ningbo
通讯作者:
高宁博
作者简介:
全翠(1985—),女,博士,副教授,研究方向为固体废物处理及资源化。E-mail:quancui@xjtu.edu.cn。
基金资助:
CLC Number:
QUAN Cui, CHEN Changxiang, GAO Ningbo, LU Lifang. Effects of surfactants and polylactic acid plastic on characteristics of food waste acidogenic fermentation[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5791-5804.
全翠, 陈常祥, 高宁博, 陆丽芳. 表面活性剂及聚乳酸塑料对餐厨垃圾发酵产酸特性影响[J]. 化工进展, 2024, 43(10): 5791-5804.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1646
参数 | 文献中数据 | ||||||
---|---|---|---|---|---|---|---|
[ | [ | [ | [ | [ | [ | [ | |
含水率/% | 81.90 | 76.90 | 74.94 | 79.01 | 77.50 | 83.93 | 81.50 |
TS/% | 18.10 | 23.10 | 25.06 | 20.99 | 22.50 | 16.07 | 18.50 |
VS/% | 17.10 | 21.00 | 22.93 | 19.36 | 21.00 | 15.52 | 17.00 |
(VS/TS)/% | 94.48 | 90.91 | 91.50 | 92.23 | 93.33 | 96.58 | 91.89 |
总固体中碳水 化合物质量分/% | 61.88 | — | — | 50.00 | — | 55.88 | — |
总固体中蛋白质质量分数/% | 18.23 | — | 16.46 | 15.57 | 17.69 | 15.59 | — |
总固体中脂质 质量分数/% | 13.26 | — | 24.31 | 22.37 | 32.46 | — | 22.80 |
pH | 6.5 | 4.2 | — | — | 6.5 | 5.2 | 5.2 |
总固体中C质量分数/% | 46.67 | 56.30 | 46.11 | 49.93 | 49.52 | — | 46.50 |
总固体中N质量分数/% | 3.54 | 2.30 | 3.19 | 2.56 | 1.90 | — | 2.20 |
C/N | 13.18 | 24.48 | 14.45 | 19.50 | 26.11 | 11.2 | 21.14 |
总固体中P质量分数/% | 0.82 | — | — | — | — | — | — |
总固体中S质量分数/% | 0.33 | — | 0.29 | — | — | — | — |
K浓度/mg∙L-1 | 1236.91 | 5313.00 | — | — | — | — | 4255.00 |
Mg浓度/mg∙L-1 | 141.41 | 269.60 | — | — | 78.75 | — | 296.00 |
Fe浓度/mg∙L-1 | 7.17 | 100.00 | — | — | 114.75 | — | 100.00 |
参数 | 文献中数据 | ||||||
---|---|---|---|---|---|---|---|
[ | [ | [ | [ | [ | [ | [ | |
含水率/% | 81.90 | 76.90 | 74.94 | 79.01 | 77.50 | 83.93 | 81.50 |
TS/% | 18.10 | 23.10 | 25.06 | 20.99 | 22.50 | 16.07 | 18.50 |
VS/% | 17.10 | 21.00 | 22.93 | 19.36 | 21.00 | 15.52 | 17.00 |
(VS/TS)/% | 94.48 | 90.91 | 91.50 | 92.23 | 93.33 | 96.58 | 91.89 |
总固体中碳水 化合物质量分/% | 61.88 | — | — | 50.00 | — | 55.88 | — |
总固体中蛋白质质量分数/% | 18.23 | — | 16.46 | 15.57 | 17.69 | 15.59 | — |
总固体中脂质 质量分数/% | 13.26 | — | 24.31 | 22.37 | 32.46 | — | 22.80 |
pH | 6.5 | 4.2 | — | — | 6.5 | 5.2 | 5.2 |
总固体中C质量分数/% | 46.67 | 56.30 | 46.11 | 49.93 | 49.52 | — | 46.50 |
总固体中N质量分数/% | 3.54 | 2.30 | 3.19 | 2.56 | 1.90 | — | 2.20 |
C/N | 13.18 | 24.48 | 14.45 | 19.50 | 26.11 | 11.2 | 21.14 |
总固体中P质量分数/% | 0.82 | — | — | — | — | — | — |
总固体中S质量分数/% | 0.33 | — | 0.29 | — | — | — | — |
K浓度/mg∙L-1 | 1236.91 | 5313.00 | — | — | — | — | 4255.00 |
Mg浓度/mg∙L-1 | 141.41 | 269.60 | — | — | 78.75 | — | 296.00 |
Fe浓度/mg∙L-1 | 7.17 | 100.00 | — | — | 114.75 | — | 100.00 |
原理 | 基质 | 处理方法 | 处理条件 | 最终效果 | 参考文献 |
---|---|---|---|---|---|
物理处理 | 餐厨垃圾 | 机械破碎 | 粉碎+球磨 | 粒径降低55.96% 产酸量增大22.68% | [ |
餐厨垃圾 | 电离辐射 | 60Co伽马射线 8.28kGy | 可溶性化学需氧量(soluble chemical oxygen demand,SCOD)增大70.6% | [ | |
剩余污泥 | 超声法 | 540W,60min | SCOD增大3.83g/L 产酸量增大1.92倍 | [ | |
餐厨垃圾与剩余污泥 | 电化学法 | 阳极:Ti/RuO2-IrO2 阴极:钛板 5V电压处理60min | SCOD增大0.71g/L 产酸量增大18.93% | [ | |
餐厨垃圾与剩余污泥 | 微波法 | 2450MHz,600W 20min | 产酸量增大7.24g/L | [ | |
热处理 | 餐厨垃圾 | 水热法 | 160℃,30min | 产酸量增大11.0g/L | [ |
橄榄厂废物 | 水热法 | 125℃,52min | 产酸量增大26.19% | [ | |
化学处理 | 餐厨垃圾 | 酸法 | HCl,pH=3 4℃,24h | SCOD增大28% 产酸量增大31.84% | [ |
碱法 | NaOH,pH=11 4℃,24h | SCOD增大28% 产酸量增大8.05% | |||
生物处理 | 餐厨垃圾 | 真菌 | 每组10g的干餐厨垃圾 60℃,100r/min,24h | SCOD增大约150g/L | [ |
商用酶 | 每组8.6g的干餐厨垃圾 60℃,100r/min,24h | SCOD增大约120g/L |
原理 | 基质 | 处理方法 | 处理条件 | 最终效果 | 参考文献 |
---|---|---|---|---|---|
物理处理 | 餐厨垃圾 | 机械破碎 | 粉碎+球磨 | 粒径降低55.96% 产酸量增大22.68% | [ |
餐厨垃圾 | 电离辐射 | 60Co伽马射线 8.28kGy | 可溶性化学需氧量(soluble chemical oxygen demand,SCOD)增大70.6% | [ | |
剩余污泥 | 超声法 | 540W,60min | SCOD增大3.83g/L 产酸量增大1.92倍 | [ | |
餐厨垃圾与剩余污泥 | 电化学法 | 阳极:Ti/RuO2-IrO2 阴极:钛板 5V电压处理60min | SCOD增大0.71g/L 产酸量增大18.93% | [ | |
餐厨垃圾与剩余污泥 | 微波法 | 2450MHz,600W 20min | 产酸量增大7.24g/L | [ | |
热处理 | 餐厨垃圾 | 水热法 | 160℃,30min | 产酸量增大11.0g/L | [ |
橄榄厂废物 | 水热法 | 125℃,52min | 产酸量增大26.19% | [ | |
化学处理 | 餐厨垃圾 | 酸法 | HCl,pH=3 4℃,24h | SCOD增大28% 产酸量增大31.84% | [ |
碱法 | NaOH,pH=11 4℃,24h | SCOD增大28% 产酸量增大8.05% | |||
生物处理 | 餐厨垃圾 | 真菌 | 每组10g的干餐厨垃圾 60℃,100r/min,24h | SCOD增大约150g/L | [ |
商用酶 | 每组8.6g的干餐厨垃圾 60℃,100r/min,24h | SCOD增大约120g/L |
塑料类型 | 处理对象 | 处理条件 | 最终效果 | 参考文献 |
---|---|---|---|---|
聚羟基丁酸酯(PHB) | 城市初级污泥 | 高温(35~90℃) 碱性条件(8<pH<12)下预处理PHB 3~48h | 投加PHB生物塑料后 甲烷产量增加5% | [ |
聚对苯二甲酸乙二醇酯(PET)微塑料 | 废弃活性污泥 | pH=10.0 水浴缸摇床[120r/min,(37±1)℃] | PET微塑料在碱性条件下抑制了废活性污泥厌氧发酵中的水解、酸化和乙酸化,导致了其对产氢的抑制作用 | [ |
聚氯乙烯(PVC)塑料 | 厌氧消化污泥 | 于(37±1)℃恒温培养箱中厌氧消化 | 低水平PVC促进甲烷产生高水平PVC抑制甲烷的产生并使其发生水解 | [ |
聚苯乙烯(PS)塑料 | 污水处理厂污泥 | pH=7.5 空气浴振荡器37℃、120r/min处理 | 甲烷产率和最大甲烷日产率分别下降了14.4%和40.7% | [ |
聚乙烯(PE)塑料 | 剩余污泥 | pH=10.0 发酵温度控制在(37±1)℃ 反应器转速为120r/min | 短期内PE有利于VFAs生成 长期高浓度PE能促进有机物溶出,但抑制VFAs生成,且对乙酸影响较大 | [ |
废弃活性污泥 | 在恒温孵化器(37±1)℃中厌氧消化持续44天 | 高水平的PE微塑料使甲烷产量降低12.4%~27.5% | [ | |
淀粉基生物塑料膜 | 餐厨垃圾与厌氧污泥 | 切割成20mm×20mm的碎片放置于(55±2)℃静态孵化器中23天 | 厌氧消化过程中产生的气体中甲烷气体的占比在40%~50%之间 | [ |
塑料(未知) | 垃圾、废纸、塑料 (2∶1∶1比例混合) | 保持37℃恒温 pH调节到约7.0 | 甲烷体积分数稳定波动在44.3%~75.4%之间 | [ |
塑料类型 | 处理对象 | 处理条件 | 最终效果 | 参考文献 |
---|---|---|---|---|
聚羟基丁酸酯(PHB) | 城市初级污泥 | 高温(35~90℃) 碱性条件(8<pH<12)下预处理PHB 3~48h | 投加PHB生物塑料后 甲烷产量增加5% | [ |
聚对苯二甲酸乙二醇酯(PET)微塑料 | 废弃活性污泥 | pH=10.0 水浴缸摇床[120r/min,(37±1)℃] | PET微塑料在碱性条件下抑制了废活性污泥厌氧发酵中的水解、酸化和乙酸化,导致了其对产氢的抑制作用 | [ |
聚氯乙烯(PVC)塑料 | 厌氧消化污泥 | 于(37±1)℃恒温培养箱中厌氧消化 | 低水平PVC促进甲烷产生高水平PVC抑制甲烷的产生并使其发生水解 | [ |
聚苯乙烯(PS)塑料 | 污水处理厂污泥 | pH=7.5 空气浴振荡器37℃、120r/min处理 | 甲烷产率和最大甲烷日产率分别下降了14.4%和40.7% | [ |
聚乙烯(PE)塑料 | 剩余污泥 | pH=10.0 发酵温度控制在(37±1)℃ 反应器转速为120r/min | 短期内PE有利于VFAs生成 长期高浓度PE能促进有机物溶出,但抑制VFAs生成,且对乙酸影响较大 | [ |
废弃活性污泥 | 在恒温孵化器(37±1)℃中厌氧消化持续44天 | 高水平的PE微塑料使甲烷产量降低12.4%~27.5% | [ | |
淀粉基生物塑料膜 | 餐厨垃圾与厌氧污泥 | 切割成20mm×20mm的碎片放置于(55±2)℃静态孵化器中23天 | 厌氧消化过程中产生的气体中甲烷气体的占比在40%~50%之间 | [ |
塑料(未知) | 垃圾、废纸、塑料 (2∶1∶1比例混合) | 保持37℃恒温 pH调节到约7.0 | 甲烷体积分数稳定波动在44.3%~75.4%之间 | [ |
1 | 李力. 厌氧膜生物反应器强化餐厨垃圾发酵制备溶解性碳源研究[D]. 西安: 西安建筑科技大学, 2021. |
LI Li. Study on producing soluble carbon sources for anaerobic acid fermentation of food waste by anaerobic membrane bioreactor[D]. Xi’an: Xi’an University of Architecture and Technology, 2021. | |
2 | BATTISTA Federico, FRISON Nicola, PAVAN Paolo, et al. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(2): 328-338. |
3 | Cecilia VILLARREAL-REYES, DE LEÓN-MARTÍNEZ Lorena Díaz, Rogelio FLORES-RAMÍREZ, et al. Ecotoxicological impacts caused by high demand surfactants in Latin America and a technological and innovative perspective for their substitution[J]. Science of the Total Environment, 2022, 816: 151661. |
4 | JIN Chenxi, SUN Shiqiang, YANG Dianhai, et al. Anaerobic digestion: An alternative resource treatment option for food waste in China[J]. Science of the Total Environment, 2021, 779: 146397. |
5 | ZHANG Lei, LEE Yong-Woo, JAHNG Deokjin. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements[J]. Bioresource Technology, 2011, 102(8): 5048-5059. |
6 | ZHANG Cunsheng, SU Haijia, TAN Tianwei. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system[J]. Bioresource Technology, 2013, 145: 10-16. |
7 | LI Yangyang, JIN Yiying, LI Jinhui, et al. Current situation and development of kitchen waste treatment in China[J]. Procedia Environmental Sciences, 2016, 31: 40-49. |
8 | JIANG Junfeng, WU Peiwen, SUN Yongming, et al. Comparison of microbial communities during anaerobic digestion of kitchen waste: Effect of substrate sources and temperatures[J]. Bioresource Technology, 2020, 317: 124016. |
9 | CHENG Lijie, GAO Ningbo, QUAN Cui, et al. Promoting the production of methane on the co-digestion of food waste and sewage sludge by aerobic pre-treatment[J]. Fuel, 2021, 292: 120197. |
10 | ZHANG Mingjiang, ZHANG Dejin, WEI Yidan, et al. Fungal mash enzymatic pretreatment combined with pH adjusting approach facilitates volatile fatty acids yield via a short-term anaerobic fermentation of food waste[J]. Waste Management, 2022, 151: 1-9. |
11 | ZHANG Cunsheng, XIAO Gang, PENG Liyu, et al. The anaerobic co-digestion of food waste and cattle manure[J]. Bioresource Technology, 2013, 129: 170-176. |
12 | LIU Min, OGUNMOROTI Abiodun, LIU Wei, et al. Assessment and projection of environmental impacts of food waste treatment in China from life cycle perspectives[J]. Science of the Total Environment, 2022, 807: 150751. |
13 | CHEN Yunzhi, PINEGAR Lizzie, IMMONEN Jake, et al. Conversion of food waste to renewable energy: A techno-economic and environmental assessment[J]. Journal of Cleaner Production, 2023, 385: 135741. |
14 | UÇKUN KIRAN Esra, TRZCINSKI Antoine P, Wun Jern NG, et al. Bioconversion of food waste to energy: A review[J]. Fuel, 2014, 134: 389-399. |
15 | 欧阳小琴, 夏为民, 熊亮. 粉煤灰资源综合利用的现状[J]. 江西能源, 2002(4): 20-22, 7. |
OUYANG Xiaoqin, XIA Weimin, XIONG Liang. The resources of comprehensive utilization of coal fly ash at present[J]. Energy Research and Management, 2002(4): 20-22, 7. | |
16 | 张晶晶. 我国餐厨废弃物处理法律问题研究[D]. 武汉: 华中农业大学, 2015. |
ZHANG Jingjing. Research on legal issues of eat hutch waste disposal in China[D]. Wuhan: Huazhong Agricultural University, 2015. | |
17 | 马厚龙, 刁若梦, 代战永, 等. 我国餐厨垃圾资源化利用技术现状分析及建议[J]. 黑龙江农业科学, 2023(7): 108-112. |
MA Houlong, DIAO Ruomeng, DAI Zhanyong, et al. Analysis and suggestions on the current situation of food waste utilization technology in China[J]. Heilongjiang Agricultural Sciences, 2023(7): 108-112. | |
18 | 毛元坤, 张子辰, 刘世奇, 等. 黑水虻生物处理餐厨垃圾与剩余污泥的效果[J]. 环境工程技术学报, 2023, 13(2): 793-799. |
MAO Yuankun, ZHANG Zichen, LIU Shiqi, et al. Effect of biotreatment of kitchen waste and excess activated sludge by black soldier fly[J]. Journal of Environmental Engineering Technology, 2023, 13(2): 793-799. | |
19 | LI Yanzeng, CHEN Zhou, PENG Yanyan, et al. Changes in aerobic fermentation and microbial community structure in food waste derived from different dietary regimes[J]. Bioresource Technology, 2020, 317: 123948. |
20 | AWASTHI Sanjeev Kumar, SARSAIYA Surendra, AWASTHI Mukesh Kumar, et al. Changes in global trends in food waste composting: Research challenges and opportunities[J]. Bioresource Technology, 2020, 299: 122555. |
21 | 黄殿男, 侯文涛, 刘闯, 等. 超高温好氧堆肥厨余垃圾技术研究[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(3): 570-576. |
HUANG Diannan, HOU Wentao, LIU Chuang, et al. Aerobic compost with super-high temperature bacteria for kitchen waste treatment[J]. Journal of Shenyang Jianzhu University (Natural Science), 2022, 38(3): 570-576. | |
22 | LI Yangyang, JIN Yiying, BORRION Aiduan, et al. Current status of food waste generation and management in China[J]. Bioresource Technology, 2019, 273: 654-665. |
23 | KURADE Mayur B, SAHA Shouvik, KIM Jung Rae, et al. Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease[J]. Bioresource Technology, 2020, 296: 122294. |
24 | KLEEREBEZEM Robbert, JOOSSE Bart, ROZENDAL Rene, et al. Anaerobic digestion without biogas?[J]. Reviews in Science Environmental Science and Bio/Technology, 2015, 14(4): 787-801. |
25 | ZHOU Miaomiao, YAN Binghua, WONG Jonathan W C, et al. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways[J]. Bioresource Technology, 2018, 248: 68-78. |
26 | Jersson PLÁCIDO, ZHANG Yue. Evaluation of esterification and membrane based solvent extraction as methods for the recovery of short chain volatile fatty acids from slaughterhouse blood anaerobic mixed fermentation[J]. Waste and Biomass Valorization, 2018, 9(10): 1767-1777. |
27 | STRAATHOF Adrie J J. Transformation of biomass into commodity chemicals using enzymes or cells[J]. Chemical Reviews, 2014, 114(3): 1871-1908. |
28 | LIU He, HAN Peng, LIU Hongbo, et al. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater[J]. Bioresource Technology, 2018, 260: 105-114. |
29 | HE Manni, SUN Yanbin, ZOU Dexun, et al. Influence of temperature on hydrolysis acidification of food waste[J]. Procedia Environmental Sciences, 2012, 16: 85-94. |
30 | HE Manni, SUN Yanbin, ZOU Dexun, et al. Influence of temperature on hydrolysis acidification of food waste[J]. Procedia Environmental Sciences, 2012, 16: 85-94. |
31 | LIU He, WANG Jin, LIU Xiaoling, et al. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH[J]. Water Research, 2012, 46(3): 799-807. |
32 | TIANG Ming Foong, NORDIN Darman, ABDUL Peer Mohamed. Effect of feeding strategies and inoculums applied on two-stage biosynthesis of polyhydroxyalkanoates from palm oil mill effluent[J].Journal of Polymers and the Environment, 2020, 28(7): 1934-1943. |
33 | JIN Yong, LIN Yujia, WANG Pan, et al. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community[J]. Bioresource Technology, 2019, 292: 121957. |
34 | WU Yang, CAO Jiashun, ZHANG Teng, et al. A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co-fermentation: Performance and mechanisms[J]. Bioresource Technology, 2020, 305: 123078. |
35 | 王坤. 提高餐厨垃圾厌氧发酵产酸技术的研究[D]. 杭州: 浙江工商大学, 2015. |
WANG Kun. The study of highly efficient fermentation of food waste for VFAs production and its preliminary mechanism[D]. Hangzhou: Zhejiang Gongshang University, 2015. | |
36 | 赵建伟. 盐度和油脂对餐厨垃圾和剩余污泥厌氧发酵产短链脂肪酸的影响与机理[D]. 长沙: 湖南大学, 2018. |
ZHAO Jianwei. Effects and mechanisms of salinity, fat, oil and grease(FOG) on short chain fatty acids production from food waste and waste activated sludge anaerobic fermentation[D]. Changsha: Hunan University, 2018. | |
37 | HE Xiaozheng, YIN Jun, LIU Jiaze, et al. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl[J]. Bioresource Technology, 2019, 271: 244-250. |
38 | LUO Jingyang, HUANG Wenxuan, GUO Wen, et al. Novel strategy to stimulate the food wastes anaerobic fermentation performance by eggshell wastes conditioning and the underlying mechanisms[J]. Chemical Engineering Journal, 2020, 398: 125560. |
39 | ZHAI Shimin, LI Min, XIONG Yonghui, et al. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion[J]. Bioresource Technology, 2020, 316: 123903. |
40 | WEI Yufang, WANG Xitong, SHI Zhengui, et al. Synergistic effect of hydrothermal pretreatment and addition of oyster shell on dark fermentation of food waste and kinetic evaluation with multiple models[J].Waste and Biomass Valorization, 2023, 14(4): 1305-1317. |
41 | WANG Lanting, LEI Zhongfang, YANG Xiaojing, et al. Fe3O4 enhanced efficiency of volatile fatty acids production in anaerobic fermentation of food waste at high loading[J]. Bioresource Technology, 2022, 364: 128097. |
42 | CAO Jiashun, ZHANG Qin, WU Si, et al. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation[J]. Science of the Total Environment, 2019, 669: 540-546. |
43 | LU Xingang, JIN Wengang, XUE Shengrong, et al. Effects of waste sources on performance of anaerobic co-digestion of complex organic wastes: Taking food waste as an example[J]. Scientific Reports, 2017, 7: 15702. |
44 | ROEBUCK Peter, KENNEDY Kevin, DELATOLLA Robert. Ultrasonic pretreatment for anaerobic digestion of suspended and attached growth sludges[J]. Water Quality Research Journal, 2019, 54(4): 265-277. |
45 | LI Yangyang, JIN Yiying, LI Jinhui, et al. Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion[J]. Energy, 2017, 118: 377-386. |
46 | ZOU Xuemei, YANG Ruijie, ZHOU Xu, et al. Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge[J]. Journal of Cleaner Production, 2020, 259: 120940. |
47 | ZHANG Sitong, ZOU Lianpei, WAN Yulan, et al. Using an expended granular sludge bed reactor for advanced anaerobic digestion of food waste pretreated with enzyme: The feasibility and its performance[J]. Bioresource Technology, 2020, 311: 123504. |
48 | LU Jia-Hsun, CHEN Chuan, HUANG Chihpin, et al. Dark fermentation production of volatile fatty acids from glucose with biochar amended biological consortium[J]. Bioresource Technology, 2020, 303: 122921. |
49 | IZUMI Kouichi, OKISHIO Yu-Ki, NAGAO Norio, et al. Effects of particle size on anaerobic digestion of food waste[J]. International Biodeterioration & Biodegradation, 2010, 64(7): 601-608. |
50 | FEI Xionghui, CHEN Ting, JIA Wenbao, et al. Enhancement effect of ionizing radiation pretreatment on biogas production from anaerobic fermentation of food waste[J]. Radiation Physics and Chemistry, 2020, 168: 108534. |
51 | LI Na, XIAO Xingxiao, LI Cheng, et al. Boosting VFAs production during the anaerobic acidification of lignocellulose waste pulp and paper mill excess sludge: Ultrasonic pretreatment and inoculating rumen microorganisms[J]. Industrial Crops and Products, 2022, 188: 115613. |
52 | LIN Qingshan, DONG Xinlei, LUO Jinming, et al. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: Performance, microbial community dynamics and metabolism[J]. Bioresource Technology, 2022, 361: 127736. |
53 | LIU Jianwei, ZHAO Mengfei, Chen LYU, et al. The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: Performance, kinetics and energy recovery[J]. Environmental Research, 2020, 189: 109856. |
54 | FONSECA Yasmim Arantes DA, SILVA Nayara Clarisse Soares, DE CAMARGOS Adonai Bruneli, et al. Influence of hydrothermal pretreatment conditions, typology of anaerobic digestion system, and microbial profile in the production of volatile fatty acids from olive mill solid waste[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105055. |
55 | ELBESHBISHY Elsayed, HAFEZ Hisham, DHAR Bipro Ranjan, et al. Single and combined effect of various pretreatment methods for biohydrogen production from food waste[J]. International Journal of Hydrogen Energy, 2011, 36(17): 11379-11387. |
56 | UÇKUN KIRAN Esra, TRZCINSKI Antoine P, LIU Yu. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment[J]. Bioresource Technology, 2015, 183: 47-52. |
57 | QIU Shuang, ZHANG Xingchen, XIA Wenhao, et al. Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure[J]. Science of the Total Environment, 2023, 877: 162702. |
58 | WANG Kun, YIN Jun, SHEN Dongsheng, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH[J]. Bioresource Technology, 2014, 161: 395-401. |
59 | MOHAN S V, DEVI M P. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment[J]. Bioresource Technology, 2012, 123: 627-635. |
60 | MAGDALENA Jose Antonio, Cristina GONZÁLEZ-FERNÁNDEZ. Archaea inhibition: Strategies for the enhancement of volatile fatty acids production from microalgae[J]. Waste Management, 2020, 102: 222-230. |
61 | YUN Yeo-Myeong, CHO Si-Kyung, JUNG Kyung-Won, et al. Inhibitory effect of chloroform on fermentative hydrogen and methane production from lipid-extracted microalgae[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19256-19261. |
62 | HU Jiawei, ZHAO Jianwei, WANG Dongbo, et al. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge[J]. Bioresource Technology, 2018, 254: 7-15. |
63 | 吴清莲. 餐厨垃圾厌氧发酵产挥发性脂肪酸的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
WU Qinglian. Study on volatile fatty acid production from food waste anaerobic fermentation[D]. Harbin: Harbin Institute of Technology, 2015. | |
64 | SANSOTERA Maurizio, PERSICO Federico, PIROLA Carlo, et al. Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions[J]. Applied Catalysis B: Environmental, 2014, 148/149: 29-35. |
65 | 程煜. 可降解塑料与餐厨垃圾混合厌氧共消化产甲烷效果及微生物群落结构特征[D]. 上海: 上海应用技术大学, 2021. |
CHENG Yu. Effect of anaerobic co-digestion of degradable plastics and food waste on methane production and characteristics of microbial community structure[D]. Shanghai: Shanghai Institute of Technology, 2021. | |
66 | 赵永杰, 裴鸿. 2021年中国表面活性剂行业原料及产品统计分析[J]. 日用化学品科学, 2022, 45(5): 1-4, 16. |
ZHAO Yongjie, PEI Hong. Statistical analysis of raw materials and products of China surfactant industry in 2021[J]. Detergent & Cosmetics, 2022, 45(5): 1-4, 16. | |
67 | 李湘婉. 餐饮废水中阴离子表面活性剂去除的实验研究[D]. 昆明: 昆明理工大学, 2015. |
LI Xiangwan. Experimental study on the removal of anionic surfactants in restaurant wastewater[D]. Kunming: Kunming University of Science and Technology, 2015. | |
68 | LUO Jingyang, ZHANG Qin, WU Lijuan, et al. Promoting the anaerobic production of short-chain fatty acids from food wastes driven by the reuse of linear alkylbenzene sulphonates-enriched laundry wastewater[J]. Bioresource Technology, 2019, 282: 301-309. |
69 | LUO Jingyang, FANG Shiyu, HUANG Wenxuan, et al. New insights into different surfactants’ impacts on sludge fermentation: Focusing on the particular metabolic processes and microbial genetic traits[J]. Frontiers of Environmental Science & Engineering, 2022, 16(8):1-14. |
70 | LUO Jingyang, WU Lijuan, FENG Qian, et al. Synergistic effects of iron and persulfate on the efficient production of volatile fatty acids from waste activated sludge: Understanding the roles of bioavailable substrates, microbial community & activities, and environmental factors[J]. Biochemical Engineering Journal, 2019, 141: 71-79. |
71 | LUO Jingyang, FENG Leiyu, CHEN Yinguang, et al. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms[J]. Water Research, 2015, 73: 332-341. |
72 | 车阳丽, 魏小芳, 张周, 等. 表面活性剂对地表水中微生物的毒性效应[J]. 中国环境科学, 2019, 39(12): 5301-5311. |
CHE Yangli, WEI Xiaofang, ZHANG Zhou, et al. Toxic effects of surfactants on microorganisms in surface water[J]. China Environmental Science, 2019, 39(12): 5301-5311. | |
73 | YIN Chao, LI Ying, ZHANG Tingyue, et al. Effects of exposure to anionic surfactants (SDBS and SDS) on nitrogen removal of aerobic denitrifier[J]. Water Environment Research, 2020, 92(12): 2129-2139. |
74 | ZHOU Aijuan, LIU Wenzong, VARRONE Cristiano, et al. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis[J]. Bioresource Technology, 2015, 192: 835-840. |
75 | PAN Xiaofang, SUN Jian, ZHANG Youchi, et al. Effect of sodium dodecyl benzene sulfonate (SDBS) on the performance of anaerobic co-digestion with sewage sludge, food waste, and green waste[J]. Chemical Engineering Communications, 2020, 207(2): 242-252. |
76 | 莫祺扬. 强化餐厨垃圾废水水解产酸发酵及反硝化脱氮的研究[D]. 长沙: 湖南大学, 2021. |
MO Qiyang. Study on enhanced hydrolysis, acidogenesis and denitrification of food waste liquor[D]. Changsha: Hunan University, 2021. | |
77 | 李子瑜, 李镇州, 窦玉婷, 等. 异源物质对餐厨垃圾厌氧消化效能的影响及调控策略[J]. 环境工程, 2023, 41(6): 222-232. |
LI Ziyu, LI Zhenzhou, DOU Yuting, et al. Influences of heterologous substances occurred in food waste on anaerobic digestion and regulation strategies: A review[J]. Environmental Engineering, 2023, 41(6): 222-232. | |
78 | FANG Shiyu, GUO Wen, FENG Qian, et al. Surfactants aggravated the biotoxicity of Fe2O3 nanoparticles in the volatile fatty acids’ biosynthesis during sludge anaerobic fermentation[J]. ACS ES&T Water, 2022, 2(12): 2686-2697. |
79 | ZHU Kongyun, ZHANG Lei, MU Lan, et al. Anaerobic digestion of surfactant and lipid co-existing organic waste: Focusing on the antagonistic enhancement[J]. Chemical Engineering Journal, 2019, 371: 96-106. |
80 | 翁云宣, 金兰英, 许国志. 中国生物基与生物分解塑料现状及发展建议[J]. 现代化工, 2010, 30(1): 2-5. |
WENG Yunxuan, JIN Lanying, XU Guozhi. Current status of bio-based and bio-degradable plastics in China and some suggestions for their industrial development[J]. Modern Chemical Industry, 2010, 30(1): 2-5. | |
81 | 张静静. 微塑料对废水厌氧消化产甲烷过程的影响研究[D]. 无锡: 江南大学, 2021. |
ZHANG Jingjing. Effect of microplastics on methane generation process from wastewater by anaerobic digestion[D]. Wuxi: Jiangnan University, 2021. | |
82 | WEI Wei, HUANG Qisu, SUN Jing, et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509-2517. |
83 | 戚瑞敏. 中国典型覆膜农区土壤微塑料特征及生态效应[D]. 北京: 中国农业科学院, 2021. |
QI Ruimin. Characteristics and ecological effects of soil microplastic in typical agricultural region with plastic film mulching in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
84 | TSENG Hou-Chia, FUJIMOTO Naoshi, OHNISHI Akihiro. Characteristics of Tepidimicrobium xylanilyticum as a lactate-utilising bacterium in polylactic acid decomposition during thermophilic anaerobic digestion[J]. Bioresource Technology Reports, 2020, 12: 100596. |
85 | KRAUSE Max J, TOWNSEND Timothy G. Life-cycle assumptions of landfilled polylactic acid underpredict methane generation[J]. Environmental Science & Technology Letters, 2016, 3(4): 166-169. |
86 | Jun Wei LIM, TING Daphne Wan Qing, Kai-Chee LOH, et al. Effects of disposable plastics and wooden chopsticks on the anaerobic digestion of food waste[J]. Waste Management, 2018, 79: 607-614. |
87 | 娄熙炜. 聚乙烯对污泥厌氧发酵的影响[D]. 青岛: 青岛科技大学, 2022. |
LOU Xiwei. Experimental study on anaerobic fermentation of sludge by polyethylene[D]. Qingdao: Qingdao University of Science & Technology, 2022. | |
88 | ZHANG Le, TSUI To-Hung, Kai-Chee LOH, et al. Effects of plastics on reactor performance and microbial communities during acidogenic fermentation of food waste for production of volatile fatty acids[J]. Bioresource Technology, 2021, 337: 125481. |
89 | CAZAUDEHORE G, MONLAU F, GASSIE C, et al. Methane production and active microbial communities during anaerobic digestion of three commercial biodegradable coffee capsules under mesophilic and thermophilic conditions[J]. The Science of the Total Environment, 2021, 784: 146972. |
90 | LU Bei, JIANG Chao, CHEN Zheng, et al. Fate of polylactic acid microplastics during anaerobic digestion of kitchen waste: Insights on property changes, released dissolved organic matters, and biofilm formation[J]. Science of the Total Environment, 2022, 834: 155108. |
91 | BENN Nicholas, ZITOMER Daniel. Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics[J]. Frontiers in Environmental Science, 2018, 5: 93. |
92 | WEI Wei, ZHANG Yuting, HUANG Qisu, et al. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms[J]. Water Research, 2019, 163: 114881. |
93 | FU Shanfei, DING Jiannan, ZHANG Yun, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science of the Total Environment, 2018, 625: 64-70. |
94 | WEI Wei, HUANG Qisu, SUN Jing, et al. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2019, 53(16): 9604-9613. |
95 | BANDINI F, FRACHE A, FERRARINI A, et al. Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste[J]. Journal of Polymers and the Environment, 2020, 28(9): 2539-2550. |
96 | WAN Shungang, SUN Lei, DOUIEB Yaniv, et al. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: Performance and microbial community structure characterization[J]. Bioresource Technology, 2013, 146: 619-627. |
[1] | LI Haoran, WANG Yan, ZHANG Tao, LYU Li, TANG Wenxiang, TANG Shengwei. Controllable regulation of microdroplets size in W/O microemulsion with Cu(Ac)2-Zn(Ac)2 solution as aqueous phase [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5168-5176. |
[2] | HUANG Sihan, LING Ling, LI Jiabin, LI Xiufen. Influence of ventilation rate on aerobic fermentation process of food waste with microbial inoculant addition [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4128-4137. |
[3] | MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759. |
[4] | HUANG Meng, SUN Zhigao, XU Wenchao, ZHANG Huanran, YANG Yang. Promotion of HCFC-141b hydrate production by lactone sophorolipids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1199-1205. |
[5] | GU Hailin, CHEN Binkang, GUO Jiaqi, FENG Jie, JIAN Qingshan, WANG Jinqing, ZHANG Guangxue. Atomization characteristics of surfactant-containing solutions and enhanced removal of fine particulate matter [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 865-871. |
[6] | SUN Wenjin, WANG Xuemei, LI Zifu. Influencing factors of directional acid production by anaerobic fermentation of food waste [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5778-5790. |
[7] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[8] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[9] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[10] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[11] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[12] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[13] | GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. |
[14] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
[15] | YAO Wen, ZHANG Yuchen, TENG Wenxin, LI Jiangling. Effect of surfactant on the preparation of Ca-doped β-In2S3 microstructure and its performance in photocatalytic degradation of methyl orange [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 774-782. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |