Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5778-5790.DOI: 10.16085/j.issn.1000-6613.2023-1608
• Resources and environmental engineering • Previous Articles
SUN Wenjin1,2(), WANG Xuemei1,2, LI Zifu1,2()
Received:
2023-09-11
Revised:
2023-12-21
Online:
2024-10-29
Published:
2024-10-15
Contact:
LI Zifu
通讯作者:
李子富
作者简介:
孙文瑾(1996—),女,硕士研究生,研究方向为厨余垃圾厌氧发酵。E-mail:ustbswj@163.com。
基金资助:
CLC Number:
SUN Wenjin, WANG Xuemei, LI Zifu. Influencing factors of directional acid production by anaerobic fermentation of food waste[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5778-5790.
孙文瑾, 王雪梅, 李子富. 厨余垃圾厌氧发酵定向产酸的影响因素[J]. 化工进展, 2024, 43(10): 5778-5790.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1608
菌种 | 碳源 | 培养模式 | 时间/h | 温度/℃ | pH | 乙酸产量/g⋅L-1 | 参考文献 |
---|---|---|---|---|---|---|---|
A. woodii | CO2/H2 | 分批培养 | 840 | 30 | 6.8 | 29.57 | [ |
C. ljungdahlii | CO2/H2 | 分批培养 | 100 | 37 | 4~6 | 1.30 | [ |
Clostridium sp. BXX | CO2/H2 | 分批培养 | 104 | 30 | 7.0 | 0.12 | [ |
Clostridium sp. YD09 | 木质纤维素 | 分批培养 | 30 | 37 | 6.5 | 0.41 | [ |
M. thermoacetica | CO2/H2 | 分批培养 | 288 | 30 | 6.8 | 17.10 | [ |
菌种 | 碳源 | 培养模式 | 时间/h | 温度/℃ | pH | 乙酸产量/g⋅L-1 | 参考文献 |
---|---|---|---|---|---|---|---|
A. woodii | CO2/H2 | 分批培养 | 840 | 30 | 6.8 | 29.57 | [ |
C. ljungdahlii | CO2/H2 | 分批培养 | 100 | 37 | 4~6 | 1.30 | [ |
Clostridium sp. BXX | CO2/H2 | 分批培养 | 104 | 30 | 7.0 | 0.12 | [ |
Clostridium sp. YD09 | 木质纤维素 | 分批培养 | 30 | 37 | 6.5 | 0.41 | [ |
M. thermoacetica | CO2/H2 | 分批培养 | 288 | 30 | 6.8 | 17.10 | [ |
菌种 | 碳源 | 培养模式 | 时间/h | 温度/℃ | pH | 丙酸产量/g⋅L-1 | 参考文献 |
---|---|---|---|---|---|---|---|
P. acidipropionici | 甘油 | 分批培养 | 240 | 30 | 7.0 | 47.28 | [ |
P. acidipropionici | 木糖 | 分批培养 | 228 | 30 | 6.0 | 53.20 | [ |
P. acidipropionici | 玉米糖蜜 | 分批培养 | 240 | 30 | 6.0 | 71.80 | [ |
P. freudenreichii | 糖蜜 | 分批培养 | 254 | 35 | 6.0 | 91.89 | [ |
P. freudenreichii | 乳清乳糖 | 重复分批、补料分批 | 688 | 30 | 6.0 | 28.70 | [ |
P. freudenreichii | 面粉水解物 | 重复分批、补料分批 | 973 | 30 | 初始6.5,87h后调整为6.0 | 35.00 | [ |
菌种 | 碳源 | 培养模式 | 时间/h | 温度/℃ | pH | 丙酸产量/g⋅L-1 | 参考文献 |
---|---|---|---|---|---|---|---|
P. acidipropionici | 甘油 | 分批培养 | 240 | 30 | 7.0 | 47.28 | [ |
P. acidipropionici | 木糖 | 分批培养 | 228 | 30 | 6.0 | 53.20 | [ |
P. acidipropionici | 玉米糖蜜 | 分批培养 | 240 | 30 | 6.0 | 71.80 | [ |
P. freudenreichii | 糖蜜 | 分批培养 | 254 | 35 | 6.0 | 91.89 | [ |
P. freudenreichii | 乳清乳糖 | 重复分批、补料分批 | 688 | 30 | 6.0 | 28.70 | [ |
P. freudenreichii | 面粉水解物 | 重复分批、补料分批 | 973 | 30 | 初始6.5,87h后调整为6.0 | 35.00 | [ |
菌种 | 碳源 | 培养模式 | 时间/h | 温度/℃ | pH | 丁酸产量/g⋅L-1 | 参考文献 |
---|---|---|---|---|---|---|---|
C. butyricum | 木薯淀粉 | 分批培养 | 120 | 37 | 6.0 | 20.86 | [ |
C. thermobutyricum | 甜高粱汁和蔗渣 | 分批培养 | 55 | 50 | 5.0 | 15.50 | [ |
C. tyrobutyricum | 玉米 | 分批培养 | — | 37 | 6.0 | 32.80 | [ |
C. tyrobutyricum | 水稻秸秆 | 补料分批 | 64 | 40 | 4.5 | 26.25 | [ |
C. tyrobutyricum | 咖啡渣 | 分批培养 | — | 37 | 6.0 | 34.30 | [ |
C. tyrobutyricum | 褐藻和稻草 | 分批培养 | 50 | 37 | 6.8 | 14.77 | [ |
菌种 | 碳源 | 培养模式 | 时间/h | 温度/℃ | pH | 丁酸产量/g⋅L-1 | 参考文献 |
---|---|---|---|---|---|---|---|
C. butyricum | 木薯淀粉 | 分批培养 | 120 | 37 | 6.0 | 20.86 | [ |
C. thermobutyricum | 甜高粱汁和蔗渣 | 分批培养 | 55 | 50 | 5.0 | 15.50 | [ |
C. tyrobutyricum | 玉米 | 分批培养 | — | 37 | 6.0 | 32.80 | [ |
C. tyrobutyricum | 水稻秸秆 | 补料分批 | 64 | 40 | 4.5 | 26.25 | [ |
C. tyrobutyricum | 咖啡渣 | 分批培养 | — | 37 | 6.0 | 34.30 | [ |
C. tyrobutyricum | 褐藻和稻草 | 分批培养 | 50 | 37 | 6.8 | 14.77 | [ |
1 | 北京日报. 生活垃圾管理条例实施8个月家庭厨余垃圾分出量增长12.7倍[EB/OL]. (2021-01-08) [2023-08-23]. . |
2 | 央广网. 上海今年 1~11月垃圾分类成效显著 有害垃圾分出量增加3.3倍[EB/OL]. (2020-12-10) [2023-08-23]. . |
3 | 深圳商报. 直击深圳垃圾分类实施百日: 家庭厨余垃圾回收量升幅 250%[EB/OL]. (2020-12-09) [2023-08-23]. . |
4 | WANG Yaya, ZANG Bing, LI Guoxue, et al. Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation[J]. Waste Management, 2016, 53: 62-67. |
5 | 姚丽铭, 王亚琢, 范洪刚, 等. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
YAO Liming, WANG Yazhuo, FAN Honggang, et al. Treatment status of kitchen waste and its research progress of pyrolysis technology[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. | |
6 | 张彤, 张立秋, 封莉, 等. 北京市垃圾分类后厨余垃圾与分类前生活垃圾性质变化分析[J]. 环境工程, 2022, 40(12): 22-28. |
ZHANG Tong, ZHANG Liqiu, FENG Li, et al. Analysis of changes in characteristics of kitchen waste after sorting and domestic waste before sorting in Beijing[J]. Environmental Engineering, 2022, 40(12): 22-28. | |
7 | 靳晨曦, 孙士强, 盛维杰, 等. 中国厨余垃圾处理技术及资源化方案选择[J]. 中国环境科学, 2022, 42(3): 1240-1251. |
JIN Chenxi, SUN Shiqiang, SHENG Weijie, et al. Food waste treatment technology and resource solution options in China[J]. China Environmental Science, 2022, 42(3): 1240-1251. | |
8 | 李欢, 周颖君, 刘建国, 等. 我国厨余垃圾处理模式的综合比较和优化策略[J]. 环境工程学报, 2021, 15(7): 2398-2408. |
LI Huan, ZHOU Yingjun, LIU Jianguo, et al. Comprehensive comparison and optimal strategies of food waste treatment modes[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2398-2408. | |
9 | LUO Hongzhen, YANG Rongling, ZHAO Yuping, et al. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation[J]. Bioresource Technology, 2018, 253: 343-354. |
10 | MORALES-PALOMO S, GONZÁLEZ-FERNÁNDEZ C, TOMÁS-PEJÓ E. Prevailing acid determines the efficiency of oleaginous fermentation from volatile fatty acids[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107354. |
11 | BHATIA Shashi Kant, GURAV Ranjit, CHOI Tae-Rim, et al. Effect of synthetic and food waste-derived volatile fatty acids on lipid accumulation in Rhodococcus sp. YHY01 and the properties of produced biodiesel[J]. Energy Conversion and Management, 2019, 192: 385-395. |
12 | PAN Lanjia, LI Jie, WANG Ruming, et al. Biosynthesis of polyhydroxyalkanoate from food waste oil by Pseudomonas alcaligenes with simultaneous energy recovery from fermentation wastewater[J]. Waste Management, 2021, 131: 268-276. |
13 | Venkateswar REDDY M, Venkata MOHAN S. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia[J]. Bioresource Technology, 2012, 103(1): 313-321. |
14 | KIM Hakchan, KIM Jaai, SHIN Seung Gu, et al. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source[J]. Bioresource Technology, 2016, 207: 440-445. |
15 | PUIG S, COMA M, MONCLÚS H, et al. Selection between alcohols and volatile fatty acids as external carbon sources for EBPR[J]. Water Research, 2008, 42(3): 557-566. |
16 | VALENTINO Francesco, MUNARIN Gianluca, BIASIOLO Marco, et al. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106062. |
17 | PERVEZ Md Nahid, Begüm BILGIÇ, MAHBOUBI Amir, et al. Double-stage membrane-assisted anaerobic digestion process intensification for production and recovery of volatile fatty acids from food waste[J]. Science of the Total Environment, 2022, 825: 154084. |
18 | 李京霖, 郑义, 赵丽雅, 等. 厨余垃圾生物合成聚羟基脂肪酸酯研究进展[J]. 中国塑料, 2022, 36(3): 110-119. |
LI Jinglin, ZHENG Yi, ZHAO Liya, et al. Research progress in biosynthesis of polyhydroxyalkanoates from kitchen waste[J]. China Plastics, 2022, 36(3): 110-119. | |
19 | MOZA Aneesh, Neeraj Raja RAM, SRIVASTAVA N K, et al. Bioprocessing of low-value food waste to high value volatile fatty acids for applications in energy and materials: A review on process-flow[J]. Bioresource Technology Reports, 2022, 19: 101123. |
20 | FENG Kai, LI Huan, ZHENG Chengzhi. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste[J]. Bioresource Technology, 2018, 270: 180-188. |
21 | 王权. 油脂及盐对餐厨垃圾产VFAs的影响研究及工程示范[D]. 北京: 清华大学, 2015. |
WANG Quan. Research on enhanced production of volatile fatty acid from food waste: Effects of salt and grease[D]. Beijing: Tsinghua University, 2015. | |
22 | 王勇, 任南琪, 孙寓姣, 等. 乙醇型发酵与丁酸型发酵产氢机理及能力分析[J]. 太阳能学报, 2002, 23(3): 366-373. |
WANG Yong, REN Nanqi, SUN Yujiao, et al. Analysis on the mechanism and capacity of two types of hydrogen production-ethanol fermentation and butyric acid fermentation[J]. Acta Energiae Solaris Sinica, 2002, 23(3): 366-373. | |
23 | RASI S, VAINIO M, BLASCO L, et al. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector[J]. Journal of Environmental Management, 2022, 308: 114640. |
24 | ZHANG Qi, LU Yu, ZHOU Xiaonan, et al. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation[J]. Science of the Total Environment, 2020, 748: 142390. |
25 | 赵学强, 陈广银, 常志州, 等. 不同有机固体废弃物水解产酸特性研究[J]. 中国沼气, 2013, 31(3): 12-17. |
ZHAO Xueqiang, CHEN Guangyin, CHANG Zhizhou, et al. Characteristics of hydrolysis and acidification of different organic solid wastes[J]. China Biogas, 2013, 31(3): 12-17. | |
26 | AGNIHOTRI Swarnima, YIN Dongmin, MAHBOUBI Amir, et al. A glimpse of the world of volatile fatty acids production and application: A review[J]. Bioengineered, 2022, 13(1): 1249-1275. |
27 | GULERIA Shikha, SINGH Harpreet, SHARMA Vamika, et al. Polyhydroxyalkanoates production from domestic waste feedstock: A sustainable approach towards bio-economy[J]. Journal of Cleaner Production, 2022, 340: 130661. |
28 | CHONG Jun Wei Roy, Guo Yong YEW, KHOO Kuan Shiong, et al. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates[J]. Journal of Environmental Management, 2021, 293: 112782. |
29 | RAJENDRAN Naveenkumar, HAN Jeehoon. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels[J]. Bioresource Technology, 2022, 348: 126796. |
30 | KOURMENTZA C, KORNAROS M. Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source[J]. Bioresource Technology, 2016, 222: 388-398. |
31 | SEKOAI Patrick, EZEOKOLI Obinna, YORO Kelvin, et al. The production of polyhydroxyalkanoates using volatile fatty acids derived from the acidogenic biohydrogen effluents: An overview[J]. Bioresource Technology Reports, 2022, 18: 101111. |
32 | ANDREOLLI Marco, SCERBACOV Vadim, FRISON Nicola, et al. Thauera sp. Sel9, a new bacterial strain for polyhydroxyalkanoates production from volatile fatty acids[J]. New Biotechnology, 2022, 72: 71-79. |
33 | ZHAO Leizhen, ZHANG Jiaqi, XU Ziyu, et al. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy[J]. Bioresource Technology, 2022, 363: 127939. |
34 | Mariel PEREZ-ZABALETA, ATASOY Merve, KHATAMI Kasra, et al. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures[J]. Bioresource Technology, 2021, 323: 124604. |
35 | ZHANG Le, Kai-Chee LOH, KUROKI Agnès, et al. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects[J]. Journal of Hazardous Materials, 2021, 402: 123543. |
36 | FEI Qiang, CHANG Ho Nam, SHANG Longan, et al. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production[J]. Bioresource Technology, 2011, 102(3): 2695-2701. |
37 | LLAMAS Mercedes, Elia TOMÁS-PEJÓ, Cristina GONZÁLEZ-FERNÁNDEZ. Volatile fatty acids from organic wastes as novel low-cost carbon source for Yarrowia lipolytica [J]. New Biotechnology, 2020, 56: 123-129. |
38 | VISHAL Kumbhar, ANAND Pandey, SONAWANE Chandrakant R, et al. Statistical analysis on prediction of biodiesel properties from its fatty acid composition[J]. Case Studies in Thermal Engineering, 2022, 30: 101775. |
39 | FORTELA Dhan Lord, HERNANDEZ Rafael, FRENCH William Todd, et al. Extent of inhibition and utilization of volatile fatty acids as carbon sources for activated sludge microbial consortia dedicated for biodiesel production[J]. Renewable Energy, 2016, 96: 11-19. |
40 | 包文君, 李子富, 王雪梅, 等. 产油酵母利用廉价原料合成油脂的研究进展[J]. 化工进展, 2021, 40(5): 2484-2495. |
BAO Wenjun, LI Zifu, WANG Xuemei, et al. Progress of oleaginous yeast utilizing low-cost substrates to synthesize lipids[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2484-2495. | |
41 | ZHANG Yongmei, WANG Xiaochang C, CHENG Zhe, et al. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment[J]. Chemosphere, 2016, 144: 689-696. |
42 | LIM S J, CHOI D W, LEE W G, et al. Volatile fatty acids production from food wastes and its application to biological nutrient removal[J]. Bioprocess Engineering, 2000, 22(6): 543-545. |
43 | YIN Zehui, WANG Jihong, WANG Mingran, et al. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review[J]. Science of the Total Environment, 2023, 873: 162341. |
44 | CHEN Yinguang, RANDALL Andrew A, MCCUE Terrence. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research, 2004, 38(1): 27-36. |
45 | JI Xueao, ZHANG Longyun, YU Xiaowei, et al. Selection of initial microbial community for the alcoholic fermentation of sesame flavor-type baijiu [J]. Food Research International, 2023, 172: 113141. |
46 | LIU Dandan, MA Xinxin, HUANG Jianli, et al. Study on personalized microbial formulation during high-temperature aerobic fermentation of different types of food wastes[J]. Science of the Total Environment, 2022, 814: 152561. |
47 | 张维清, 王博, 刘艳香, 等. 不同类型乳酸菌对全麦酸面团发酵特性的影响[J]. 中国食品学报, 2022, 22(11): 247-255. |
ZHANG Weiqing, WANG Bo, LIU Yanxiang, et al. Effect of different types lactic acid bacteria on the fermentation characteristics of whole wheat sourdough[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(11): 247-255. | |
48 | WU Lan, WEI Wei, CHEN Zhijie, et al. Medium chain fatty acids production from anaerobic fermentation of food wastes: The role of fermentation pH in metabolic pathways[J]. Chemical Engineering Journal, 2023, 472: 144824. |
49 | KHATAMI Kasra, ATASOY Merve, LUDTKE Maximilian, et al. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time[J]. Chemosphere, 2021, 275: 129981. |
50 | STRAZZERA Giuseppe, BATTISTA Federico, TONANZI Barbara, et al. Optimization of short chain volatile fatty acids production from household food waste for biorefinery applications[J]. Environmental Technology & Innovation, 2021, 23: 101562. |
51 | 谢丽, 杜诗云, 卜凡. 同型产乙酸菌研究进展及其环境生物技术应用[J]. 同济大学学报(自然科学版), 2018, 46(1): 67-73, 108. |
XIE Li, DU Shiyun, BU Fan. Homoacetogen and its application in environmental biotechnology[J]. Journal of Tongji University (Natural Science), 2018, 46(1): 67-73, 108. | |
52 | STEGER Franziska, RACHBAUER Lydia, WINDHAGAUER Matthias, et al. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii [J]. Anaerobe, 2017, 46: 96-103. |
53 | YOUNESI Habibollah, NAJAFPOUR Ghasem, MOHAMED Abdul Rahman. Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii [J]. Biochemical Engineering Journal, 2005, 27(2): 110-119. |
54 | 朱慧, 符波, 鲁帅领, 等. 一株新型同型产乙酸菌Clostridium sp.的自养和异养生长特性[J]. 微生物学通报, 2018, 45(11): 2320-2330. |
ZHU Hui, FU Bo, LU Shuailing, et al. Autotrophic and heterotrophic characteristics of a novel acetogenic Clostridium sp[J]. Microbiology China, 2018, 45(11): 2320-2330. | |
55 | KIM Sang Hyun, YI Ye da, KIM Hyun Joong, et al. Hyper biohydrogen production from xylose and xylose-based hemicellulose biomass by the novel strain Clostridium sp. YD09[J]. Biochemical Engineering Journal, 2022, 187: 108624. |
56 | UPADHYAY Apoorva, KOVALEV Andrey A, ZHURAVLEVA Elena A, et al. Enhanced production of acetic acid through bioprocess optimization employing response surface methodology and artificial neural network[J]. Bioresource Technology, 2023, 376: 128930. |
57 | HUANG Cheng, WANG Wei, SUN Xiuyun, et al. A novel acetogenic bacteria isolated from waste activated sludge and its potential application for enhancing anaerobic digestion performance[J]. Journal of Environmental Management, 2020, 255: 109842. |
58 | CHEN Yuexi, ZHANG Xuemeng, CHEN Yinguang. Propionic acid-rich fermentation (PARF) production from organic wastes: A review[J]. Bioresource Technology, 2021, 339: 125569. |
59 | 赵紫华, 仪宏, 朱文众, 等. 丙酸发酵的研究进展[J]. 中国食品添加剂, 2004(6): 14-18, 13. |
ZHAO Zihua, YI Hong, ZHU Wenzhong, et al. Approaches in propionic acid fermentation[J]. China Food Additives, 2004(6): 14-18, 13. | |
60 | ZHU Yunfeng, LI Jianghua, TAN Ming, et al. Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source[J]. Bioresource Technology, 2010, 101(22): 8902-8906. |
61 | LIU Zhen, MA Cuiqing, GAO Chao, et al. Efficient utilization of hemicellulose hydrolysate for propionic acid production using Propionibacterium acidipropionici [J]. Bioresource Technology, 2012, 114: 711-714. |
62 | FENG Xiaohai, CHEN Fei, XU Hong, et al. Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor[J]. Bioresource Technology, 2011, 102(10): 6141-6146. |
63 | BEZIRCI Emine, Hatice TAŞPıNAR-DEMIR, Burcu TURANLı-YıLDıZ, et al. Propionic acid production via two-step sequential repeated batch fermentations on whey and flour[J]. Biochemical Engineering Journal, 2023, 192: 108816. |
64 | WANG Zhongqiang, LIN Meng, WANG Liqun, et al. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: Effects of overexpressing three biotin-dependent carboxylases[J]. Process Biochemistry, 2015, 50(2): 194-204. |
65 | 胡晓龙, 李聪聪, 何培新, 等. 酪丁酸梭菌RL1产丁酸发酵条件优化研究[J]. 轻工学报, 2018, 33(4): 21-28. |
HU Xiaolong, LI Congcong, HE Peixin, et al. Optimization of fermentation conditions for the production of butyric acid by Clostridium tyrobutyricum RL1[J]. Journal of Light Industry, 2018, 33(4): 21-28. | |
66 | DUDEK Karol, MOLINA-GUERRERO Carlos Eduardo, Idania VALDEZ-VAZQUEZ. Profitability of single- and mixed-culture fermentations for the butyric acid production from a lignocellulosic substrate[J]. Chemical Engineering Research and Design, 2022, 182: 558-570. |
67 | FU Hongxin, YUE Zhi, FENG Jun, et al. Consolidated bioprocessing for butyric acid production from raw cassava starch by a newly isolated Clostridium butyricum SCUT620[J]. Industrial Crops and Products, 2022, 187: 115446. |
68 | WANG Liang, Mark S OU, NIEVES Ismael, et al. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50℃[J]. Bioresource Technology, 2015, 198: 533-539. |
69 | SUO Yukai, LIAO Zhengping, QU Chunyun, et al. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from undetoxified corncob acid hydrolysate[J]. Bioresource Technology, 2019, 271: 266-273. |
70 | LIU Tingting, MALKMES Matthew Jay, ZHU Liying, et al. Metal-organic frameworks coupling simultaneous saccharication and fermentation for enhanced butyric acid production from rice straw under visible light by Clostridium tyrobutyricum CtΔack: : cat1[J]. Bioresource Technology, 2021, 332: 125117. |
71 | HE Feifei, QIN Shiwen, YANG Zhi, et al. Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes[J]. Bioresource Technology, 2020, 304: 122977. |
72 | Hyun Ju OH, KIM Ki-Yeon, LEE Kyung Min, et al. Enhanced butyric acid production using mixed biomass of brown algae and rice straw by Clostridium tyrobutyricum ATCC25755[J]. Bioresource Technology, 2019, 273: 446-453. |
73 | YU Peng, TU Weiming, WU Menghan, et al. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH[J]. Bioresource Technology, 2021, 332: 125116. |
74 | ATASOY Merve, CETECIOGLU Zeynep. Butyric acid dominant volatile fatty acids production: Bio-augmentation of mixed culture fermentation by Clostridium butyricum [J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104496. |
75 | WANG Ya zhu, ZHENG Jin, NAWAZ Muhammad, et al. Oligosaccharide-phenolic compound conjugates in soluble polysaccharides from rice straw alleviate ethanol fermentation stresses in Saccharomyces cerevisiae [J]. Industrial Crops and Products, 2022, 181: 114782. |
76 | Jing LYU, LIN Xinping, LIU Mengyang, et al. Effect of Saccharomyces cerevisiae LXPSC1 on microorganisms and metabolites of sour meat during the fermentation[J]. Food Chemistry, 2023, 402: 134213. |
77 | ZHENG Linke, XU Ying, GENG Hui, et al. Enhancing short-term ethanol-type fermentation of waste activated sludge by adding saccharomycetes and the implications for bioenergy and resource recovery[J]. Journal of Environmental Sciences, 2022, 113: 179-189. |
78 | 欧海声, 张鹏飞, 王晓春, 等. 拉曼光谱与MCR算法分析酵母菌株间细胞乙醇发酵代谢差异[J]. 中国激光, 2022, 49(15): 203-211. |
Haisheng OU, ZHANG Pengfei, WANG Xiaochun, et al. Insights into cellular metabolic differences among yeast strains in ethanol fermentation by Raman spectroscopy and multivariate curve resolution algorithm[J]. Chinese Journal of Lasers, 2022, 49(15): 203-211. | |
79 | ZHAO Yuzong, LIU Shuangping, HAN Xiao, et al. Combined effects of fermentation temperature and Saccharomyces cerevisiae strains on free amino acids, flavor substances, and undesirable secondary metabolites in huangjiu fermentation[J]. Food Microbiology, 2022, 108: 104091. |
80 | 赵姝一, 袁冰, 王雪晴, 等. 过表达tRNA基因tL(CAA)K提高酿酒酵母乙酸耐受性[J]. 生物工程学报, 2021, 37(12): 4293-4302. |
ZHAO Shuyi, YUAN Bing, WANG Xueqing, et al. Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae [J]. Chinese Journal of Biotechnology, 2021, 37(12): 4293-4302. | |
81 | 张波, 史红钻, 张丽丽, 等. pH对厨余废物两相厌氧消化中水解和酸化过程的影响[J]. 环境科学学报, 2005, 25(5): 665-669. |
ZHANG Bo, SHI Hongzuan, ZHANG Lili, et al. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion[J]. Acta Scientiae Circumstantiae, 2005, 25(5): 665-669. | |
82 | 任南琪, 秦智, 李建政. 不同产酸发酵菌群产氢能力的对比与分析[J]. 环境科学, 2003, 24(1): 70-74. |
REN Nanqi, QIN Zhi, LI Jianzheng. Comparison and analysis of hydrogen production capacity with different acidogenic fermentative microflora[J]. Chinese Journal of Enviromental Science, 2003, 24(1): 70-74. | |
83 | 李定龙, 戴肖云, 赵宋敏, 等. pH对厨余垃圾厌氧发酵产酸的影响[J]. 环境科学与技术, 2011, 34(4): 125-128, 167. |
LI Dinglong, DAI Xiaoyun, ZHAO Songmin, et al. Influence of pH on acidity during anaerobic fermentation of kitchen waste[J]. Environmental Science & Technology, 2011, 34(4): 125-128, 167. | |
84 | WANG Kun, YIN Jun, SHEN Dongsheng, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH[J]. Bioresource Technology, 2014, 161: 395-401. |
85 | JIN Yong, LIN Yujia, WANG Pan, et al. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community[J]. Bioresource Technology, 2019, 292: 121957. |
86 | ZHOU Xiaonan, LU Yu, HUANG Liu, et al. Effect of pH on volatile fatty acid production and the microbial community during anaerobic digestion of Chinese cabbage waste[J]. Bioresource Technology, 2021, 336: 125338. |
87 | 陈宏, 吴军, 陈晨, 等. 有机废弃物厌氧共发酵制氢研究进展[J]. 化工进展, 2021, 40(1): 440-450. |
CHEN Hong, WU Jun, CHEN Chen, et al. Advances in biohydrogen production from anaerobic co-fermentation of organic wastes[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 440-450. | |
88 | 杨贵清, 刘刚, 杨长得. 酪丁酸梭菌代谢工程菌的构建及其发酵特性[J]. 生物工程学报, 2010, 26(2): 170-176. |
YANG Guiqing, LIU Gang, YANG Changde. Engineering and metabolic characteristics of a Clostridium tyrobutyricum strain[J]. Chinese Journal of Biotechnology, 2010, 26(2): 170-176. | |
89 | 黄越, 赵立欣, 姚宗路, 等. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701. |
HUANG Yue, ZHAO Lixin, YAO Zonglu, et al. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. | |
90 | 陈小翠, 张增强, 吴浩豪, 等. 餐饮废物制取燃料乙醇发酵条件研究[J]. 环境科学学报, 2010, 30(3): 556-564. |
CHEN Xiaocui, ZHANG Zengqiang, WU Haohao, et al. Optimization of fermentation conditions for ethanol production from restaurant waste[J]. Acta Scientiae Circumstantiae, 2010, 30(3): 556-564. | |
91 | ZHANG Le, Kai-Chee LOH, DAI Yanjun, et al. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation[J]. Waste Management, 2020, 109: 75-84. |
92 | 黄楠, 赵宋敏, 李定龙, 等. 厨余垃圾厌氧发酵产酸工艺研究[J]. 安徽农业科学, 2010, 38(28): 15773-15775, 15781. |
HUANG Nan, ZHAO Songmin, LI Dinglong, et al. Research on the fermentation technology of the garbage from kitchen[J]. Journal of Anhui Agricultural Sciences, 2010, 38(28): 15773-15775, 15781. | |
93 | 赵杰红, 张波, 蔡伟民. 温度对厨余垃圾两相厌氧消化中水解和酸化过程的影响[J]. 环境科学, 2006, 27(8): 1682-1686. |
ZHAO Jiehong, ZHANG Bo, CAI Weimin. Influence of temperature on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion[J]. Environmental Science, 2006, 27(8): 1682-1686. | |
94 | 赵宋敏, 李定龙, 戴肖云, 等. 温度对厨余垃圾厌氧发酵产酸的影响[J]. 环境污染与防治, 2011, 33(3): 44-47, 64. |
ZHAO Songmin, LI Dinglong, DAI Xiaoyun, et al. The influence of temperature on acid production during anaerobic fermentation of kitchen garbage[J]. Environmental Pollution & Control, 2011, 33(3): 44-47, 64. | |
95 | HE Manni, SUN Yanbin, ZOU Dexun, et al. Influence of temperature on hydrolysis acidification of food waste[J]. Procedia Environmental Sciences, 2012, 16: 85-94. |
96 | GONG Xiaoqiang, WU Menghan, JIANG Yong, et al. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production[J]. Bioresource Technology, 2021, 333: 125149. |
97 | LI Benyan, XIA Ziyuan, GOU Min, et al. Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics[J]. Bioresource Technology, 2022, 346: 126648. |
98 | ROSSI Elena, PECORINI Isabella, PAOLI Paola, et al. Plug-flow reactor for volatile fatty acid production from the organic fraction of municipal solid waste: Influence of organic loading rate[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106963. |
99 | ZHU Yahui, JIN Zhen, YU Qilin, et al. Alleviating acid inhibition in anaerobic digestion of food waste: Coupling ethanol-type fermentation with biochar addition[J]. Environmental Research, 2022, 212: 113355. |
100 | WAINAINA Steven, AWASTHI Mukesh Kumar, HORVÁTH Ilona Sárvári, et al. Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors[J]. Renewable Energy, 2020, 152: 1140-1148. |
101 | JIANG Jianguo, ZHANG Yujing, LI Kaimin, et al. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate[J]. Bioresource Technology, 2013, 143: 525-530. |
102 | DE GROOF Vicky, COMA Marta, ARNOT Tom, et al. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters[J]. Waste Management, 2021, 127: 80-89. |
103 | WEI Tong, FANG Qian, LUO Jin, et al. Insight into effects of long-chain fatty acids on propionic acid production in anaerobic fermentation: A case study of oleic acid and palmitic acid[J]. Journal of Water Process Engineering, 2021, 44: 102415. |
104 | CHEN Boyang, RUPANI Parveen Fatemeh, AZMAN Samet, et al. A redox-based strategy to enhance propionic and butyric acid production during anaerobic fermentation[J]. Bioresource Technology, 2022, 361: 127672. |
105 | DAHIYA Shikha, Venkata MOHAN S. Selective control of volatile fatty acids production from food waste by regulating biosystem buffering: A comprehensive study[J]. Chemical Engineering Journal, 2019, 357: 787-801. |
106 | 李亚红, 王琦, 蔡伟民. 不同pH值条件下Fe3+、Cu2+和Zn2+对厨余垃圾两相厌氧消化水解酸化过程的影响[J]. 环境工程学报, 2007, 1(10): 116-119. |
LI Yahong, WANG Qi, CAI Weimin. Effect of Fe3+, Cu2+ and Zn2+ on the hydrolysis and acidification of two-phase anaerobic digesting kitchen wastes at different pH values[J]. Chinese Journal of Environmental Engineering, 2007, 1(10): 116-119. | |
107 | CAO Jiashun, ZHANG Qin, WU Si, et al. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation[J]. Science of the Total Environment, 2019, 669: 540-546. |
108 | PING Qiqi, FANG Qian, CHEN Yujia, et al. Effect of Fe3O4 on propionic acid production by anaerobic fermentation of waste cooking oil and aerobic sludge[J]. Journal of Water Process Engineering, 2022, 49: 102910. |
[1] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
[2] | JIANG Liangyan, WANG Qinghong, LI Jin, LIANG Jiahao, SHANG Pengyin, SONG Yanke, LI Zhuoyu, CHEN Chunmao. Comparison of hydrolysis and acidification performance and microbial characteristics of refinery wastewater at mesophilic and psychrophilic temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4654-4663. |
[3] | WANG Juan, BIAN Chunlin, CHEN Xiangyu, WANG Ying, WANG Xindong, ZUO Yanxin, XIAO Benyi. Research advances of microaerobic anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4005-4014. |
[4] | HUANG Sihan, LING Ling, LI Jiabin, LI Xiufen. Influence of ventilation rate on aerobic fermentation process of food waste with microbial inoculant addition [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4128-4137. |
[5] | YUAN Xiaoli, LI Qingyun, LIU Youyan, LI Jin, BAI Xue, TANG Aixing. Construction of aminopeptidase on the surface of Bacillus subtilis and its synergic hydrolysis of soybean protein [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1466-1473. |
[6] | ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1593-1605. |
[7] | BAI Yuli, BAI Fudong, ZHANG Lei, SUN Qimei, LI Xiuzheng. Preparation and process optimization of lignin-based phenolic resin [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1033-1038. |
[8] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[9] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[10] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[11] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[12] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[13] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[14] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[15] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |