Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5533-5542.DOI: 10.16085/j.issn.1000-6613.2023-1520
• Industrial catalysis • Previous Articles
FANG Jiasheng(), CHEN Ming, HUANG Zhenting, WEI Kun, CHEN Yulan
Received:
2023-09-01
Revised:
2023-11-18
Online:
2024-10-29
Published:
2024-10-15
Contact:
FANG Jiasheng
通讯作者:
方嘉声
作者简介:
方嘉声(1988—),男,博士,讲师,研究方向为纳米催化材料。E-mail:fangjs@dgut.edu.cn。
基金资助:
CLC Number:
FANG Jiasheng, CHEN Ming, HUANG Zhenting, WEI Kun, CHEN Yulan. Template-modulated synthesis of supported hollow core-shell Au catalysts for catalytic oxidation of benzyl alcohol[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5533-5542.
方嘉声, 陈铭, 黄振庭, 卫昆, 陈玉兰. 模板法构建载金核壳中空复合催化剂及催化氧化苯甲醇[J]. 化工进展, 2024, 43(10): 5533-5542.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1520
序号 | 催化剂 | 苯甲醇转化率/% | 苯甲醛选择性/% | 参考文献 |
---|---|---|---|---|
1 | Au@H-mCeO2 | 60 | 88 | 本文制备 |
2 | Au@H-mTiO2 | 47 | 80 | 本文制备 |
3 | Au@H-mSiO2 | 35 | 82 | 本文制备 |
4 | Au/γ-Al2O3 | 29.6 | 61.9 | [ |
5 | Au/TS-1 | 67 | 84 | [ |
6 | Au/U3O8 | 27 | 86.6 | [ |
7 | SCAumS | 58 | 82 | [ |
8 | mSiO2/Au/Co3O4 | 55 | 84 | [ |
9 | Au/TiO2 | 55 | 73.7 | [ |
序号 | 催化剂 | 苯甲醇转化率/% | 苯甲醛选择性/% | 参考文献 |
---|---|---|---|---|
1 | Au@H-mCeO2 | 60 | 88 | 本文制备 |
2 | Au@H-mTiO2 | 47 | 80 | 本文制备 |
3 | Au@H-mSiO2 | 35 | 82 | 本文制备 |
4 | Au/γ-Al2O3 | 29.6 | 61.9 | [ |
5 | Au/TS-1 | 67 | 84 | [ |
6 | Au/U3O8 | 27 | 86.6 | [ |
7 | SCAumS | 58 | 82 | [ |
8 | mSiO2/Au/Co3O4 | 55 | 84 | [ |
9 | Au/TiO2 | 55 | 73.7 | [ |
1 | Akbar MAHDAVI-SHAKIB, SEMPEL Janine, HOFFMAN Maya, et al. Au/TiO2-catalyzed benzyl alcohol oxidation on morphologically precise anatase nanoparticles[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11793-11804. |
2 | GUO Shiyu, CAO Dongjie, XIAO Peirong, et al. Activating Pd nanoparticles on oxygen-doped g-C3N4 for visible light-driven thermocatalytic oxidation of benzyl alcohol[J]. Inorganic Chemistry, 2022, 61(39): 15654-15663. |
3 | LI Shuchun, ZHANG Xuefei, HUANG Xiaoyan, et al. Identification of active sites of B/N co-doped nanocarbons in selective oxidation of benzyl alcohol[J]. Journal of Colloid and Interface Science, 2022, 608: 2801-2808. |
4 | WANG Zhe, FENG Jiangjiang, LI Xiaoliang, et al. Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol[J]. Journal of Colloid and Interface Science, 2021, 588: 787-794. |
5 | SU Ziyi, YANG Chenghan, DENG Qinghua, et al. Synthesis of a novel spherical-shell-structure polymerized ionic liquid microsphere PILM/Au/Al(OH)3 catalyst for benzyl alcohol oxidation[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 16631-16639. |
6 | SONG Zhenlong, LIU Jianguo, HU Yuzhen, et al. Solvent-controlled selective photocatalytic oxidation of benzyl alcohol over Ni@C/TiO2 [J]. Catalysis Communications, 2023, 176: 106628. |
7 | GUALTEROS Jesus A D, GARCIA Marco A S, SILVA Anderson G M DA, et al. Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings[J]. Journal of Materials Science, 2019, 54: 238-251. |
8 | BRINDLE Joseph, SUFYAN Sayed ABU, NIGRA Michael M. Support, composition, and ligand effects in partial oxidation of benzyl alcohol using gold-copper clusters[J]. Catalysis Science & Technology, 2022, 12(12): 3846-3855. |
9 | LUO Jingjie, DONG Yanan, YANG Sihan, et al. Au nanoparticles anchored on sulfonated carbon nanotubes for benzyl alcohol oxidation[J]. ACS Applied Nano Materials, 2022, 5(4): 4887-4895. |
10 | MA Yingzhen, NAGY Gergely, Miriam SIEBENBÜRGER, et al. Adsorption and catalytic activity of gold nanoparticles in mesoporous silica: Effect of pore size and dispersion salinity[J]. The Journal of Physical Chemistry C, 2022, 126(5): 2531-2541. |
11 | KARAMI Shima, KABIRI ESFAHANI Farhad, KARIMI Babak. Gold nanoparticles supported on carbon coated magnetic nanoparticles; A robustness and effective catalyst for aerobic alcohols oxidation in water[J]. Molecular Catalysis, 2023, 534: 112772. |
12 | MANIVANNAN Shanmugam, AN Seonghwi, JEONG Juwon, et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: Simultaneous catalytic reduction of o- and p-nitrophenols[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17557-17570. |
13 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Confinement of Au, Pd and Pt nanoparticle with reduced sizes: Significant improvement of dispersion degree and catalytic activity[J]. Microporous and Mesoporous Materials, 2022, 337: 111927. |
14 | ZHANG Li, SUN Lei, SU Ting, et al. Graphene-based hydrogel with embedded gold nanoparticles as a recyclable catalyst for the degradation of 4-nitrophenol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128410. |
15 | BUONERBA Antonio, NOSCHESE Annarita, CAPACCHIONE Carmine, et al. Gold nanoparticles supported on poly(2,6-dimethyl-1,4-phenylene oxide) as robust, selective and cost-effective catalyst for aerobic oxidation and direct oxidative esterification of alcohols[J]. ChemCatChem, 2022, 14(14): e202200338. |
16 | YANG Fan, WU Chunzheng, YU Hongbo, et al. The fabrication of hollow ZrO2 nanoreactors encapsulating Au-Fe2O3 dumbbell nanoparticles for CO oxidation[J]. Nanoscale, 2021, 13(14): 6856-6862. |
17 | ZIARATI Abolfazl, BADIEI Alireza, LUQUE Rafael, et al. Visible light CO2 reduction to CH4 using hierarchical yolk@shell TiO2-xH x modified with plasmonic Au-Pd nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3689-3696. |
18 | CAI Ren, JIN Haiyan, YANG Dan, et al. Generalized preparation of Au NP@Ni(OH)2 yolk-shell NPs and their enhanced catalytic activity[J]. Nano Energy, 2020, 71: 104542. |
19 | YU Honghao, WANG Runwei, ZHANG Zongtao, et al. Yolk-shell smart Pickering nanoreactors for base-free one-pot cascade Knoevenagel-hydrogenation with high catalytic efficiency in water[J]. Inorganic Chemistry Frontiers, 2022, 9(7): 1395-1405. |
20 | DAI Shan, NGOC KIEU Phung, GRIMAUD Laurence, et al. Impact of capping agent removal from Au NPs@MOF core-shell nanoparticle heterogeneous catalysts[J]. Journal of Materials Chemistry A, 2022, 10(6): 3201-3205. |
21 | CUI Kaixun, ZHONG Wanfu, LI Lingyun, et al. Well-defined metal Nanoparticles@Covalent organic framework yolk-shell nanocages by ZIF-8 template as catalytic nanoreactors[J]. Small, 2019, 15(3): e1804419. |
22 | LEI Lingli, ZHANG Yuanyuan, JIANG Ying, et al. Oxygen-vacancy-enhanced catalytic activity of Au@Co3O4/CeO2 yolk-shell nanocomposite to electrochemically detect hydrogen peroxide[J]. Electroanalysis, 2021, 33(10): 2180-2186. |
23 | CHEN Guozhu, WANG Yong, WEI Yunwei, et al. Successive interfacial reaction-directed synthesis of CeO2@Au@CeO2-MnO2 environmental catalyst with sandwich hollow structure[J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11595-11603. |
24 | Xushuai LYU, YUAN Shenhao, ZHANG Yiwei, et al. Preparation of cyclonic Co3O4/Au/mesoporous SiO2 catalysts with core-shell structure for solvent-free oxidation of benzyl alcohol[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 448-455. |
25 | YUAN Shenhao, Xushuai LYU, ZHANG Yiwei, et al. Fabrication of mesoporous SiO2/Au/Co3O4 hollow spheres catalysts with core-shell structure for liquid phase oxidation of benzyl alcohol to benzaldehyde[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103: 138-148. |
26 | CUI Zhiqing, ZHOU Hongjian, WANG Guozhong, et al. Enhancement of the visible-light photocatalytic activity of CeO2 by chemisorbed oxygen in the selective oxidation of benzyl alcohol[J]. New Journal of Chemistry, 2019, 43(19): 7355-7362. |
27 | LI Jin, WANG Qinglin, YU Shudi, et al. Highly dispersed Pd nanoclusters on layered double hydroxides with proper calcination improving solvent-free oxidation of benzyl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(22): 7223-7233. |
28 | LONG Nguyen Quang, QUAN Ngo Anh. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by nano Au/γ-Al2O3 under environment-friendly conditions[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(1): 147-155. |
29 | ZHAN Guowu, HUANG Jiale, DU Mingming, et al. Liquid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: High activity and durability[J]. Chemical Engineering Journal, 2012, 187: 232-238. |
30 | CHOUDHARY Vasant R, Rani JHA, JANA Prabhas. Solvent-free selective oxidation of benzyl alcohol by molecular oxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-free benzaldehyde[J]. Green Chemistry, 2007, 9(3): 267-272. |
31 | DIMITRATOS Nikolaos, LOPEZ-SANCHEZ Jose Antonio, MORGAN David, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a Sol immobilization technique[J]. Catalysis Today, 2007, 122(3/4): 317-324. |
32 | ZHU Jie, WANG Pengcheng, LU Ming. Selective oxidation of benzyl alcohol under solvent-free condition with gold nanoparticles encapsulated in metal-organic framework[J]. Applied Catalysis A: General, 2014, 477:125-131. |
33 | HU Zonggao, ZHOU Guoli, XU Li, et al. Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol[J]. Applied Surface Science, 2019, 471:852-861. |
34 | CHEN Yuanting, ZHENG Huijian, GUO Zhen, et al. Pd catalysts supported on MnCeO x mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: Support composition and structure sensitivity[J]. Journal of Catalysis, 2011, 283(1): 34-44. |
35 | ZOU Zhiqiang, MENG Ming, ZHA Yuqing. Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnO x -CeO2 and Pd/MnO x -CeO2 catalysts used for CO and C3H8 oxidation[J]. The Journal of Physical Chemistry C, 2010, 114(1): 468-477. |
36 | CHANG Chunran, YANG Xiaofeng, LONG Bo, et al. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: Understanding the catalytic behavior of bulk gold[J]. ACS Catalysis, 2013, 3(8):1693-1699. |
37 | FERRI Davide, MONDELLI Cecilia, KRUMEICH Frank, et al. Discrimination of active palladium sites in catalytic liquid-phase oxidation of benzyl alcohol[J]. The Journal of Physical Chemistry B, 2006, 110(46): 22982-22986. |
38 | SAVARA Aditya, CHAN-THAW Carine E, ROSSETTI Ilenia, et al. Benzyl alcohol oxidation on carbon-supported Pd nanoparticles: Elucidating the reaction mechanism[J]. ChemCatChem, 2014, 6(12): 3464-3473. |
39 | NOWICKA Ewa, HOFMANN Jan P, PARKER Stewart F, et al. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol[J]. Physical Chemistry Chemical Physics, 2013, 15(29): 12147-12155. |
[1] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[2] | LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940. |
[3] | XIU Haoran, WANG Yungang, BAI Yanyuan, LIU Tao, ZHANG Xingbang, ZHANG Yijia. Pilot test of H2O2 low temperature catalytic oxidation for desulfurization and denitrification [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4941-4950. |
[4] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
[5] | MA Hongzhou, DANG Yubo, WANG Yaoning, ZENG Jinyang, ZHAO Xiaojun, SHI Jianwei. Zinc-based desulfurizer scrap and copper-zinc-based catalyst synergistic vacuum carbothermal extraction of zinc [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5275-5281. |
[6] | HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. |
[7] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[8] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[9] | ZHANG Xi, LI Haoxin, ZHANG Tianyang, LI Zifu, SUN Wenjun, AO Xiuwei. Degradation of per- and polyfluoroalkyl substances in water by UV-based advanced oxidation or advanced reduction processes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4587-4600. |
[10] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
[11] | HU Junjie, HUANG Xingjun, LEI Cheng, YANG Min, LAN Yuanxiao, LUO Jianhong. Advanced treatment of small molecular organic in shale gas produced water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4674-4680. |
[12] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
[13] | LI Wenzhe, SHEN Miao, WANG Jianqiang. Research progress in the preparation of new two-dimensional layered metal carbon/nitrides by molten salt method [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3660-3671. |
[14] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
[15] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |