Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5498-5516.DOI: 10.16085/j.issn.1000-6613.2023-1705
• Industrial catalysis • Previous Articles
FENG Kai(), MENG Hao(), YANG Yusen(), WEI Min
Received:
2023-09-26
Revised:
2024-03-21
Online:
2024-10-29
Published:
2024-10-15
Contact:
MENG Hao, YANG Yusen
通讯作者:
孟浩,杨宇森
作者简介:
冯凯(2000—),男,硕士研究生,研究方向为甲醇重整制氢和丙烷脱氢。E-mail:2022201055@buct.edu.cn。
基金资助:
CLC Number:
FENG Kai, MENG Hao, YANG Yusen, WEI Min. Research progress on catalysts for hydrogen production by methanol steam reforming[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5498-5516.
冯凯, 孟浩, 杨宇森, 卫敏. 甲醇水蒸气重整制氢催化剂的研究进展[J]. 化工进展, 2024, 43(10): 5498-5516.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1705
甲醇重整产氢 | 反应示意图 | 反应方程 | 优势 | 劣势 |
---|---|---|---|---|
甲醇水蒸气重整 | H2产率最高;不需要提供氧气;CO含量较低 | 需要外部较高的能量供应 | ||
甲醇部分氧化 | 快速启动和响应时间;碳积累少;无需较高的热供应 | 较低的H2产率;H2容易过氧化;CO含量高 | ||
甲醇自热重整 | 放热和吸热反应的耦合;简化热量管理;工作温度低;快速启动 | H2产率低;需要控制系统平衡放热和吸热过程;H2容易过氧化 | ||
甲醇分解 | 反应简便;无需额外原料的引入 | H2产率最低;CO含量过高;催化剂容易积炭失活 |
甲醇重整产氢 | 反应示意图 | 反应方程 | 优势 | 劣势 |
---|---|---|---|---|
甲醇水蒸气重整 | H2产率最高;不需要提供氧气;CO含量较低 | 需要外部较高的能量供应 | ||
甲醇部分氧化 | 快速启动和响应时间;碳积累少;无需较高的热供应 | 较低的H2产率;H2容易过氧化;CO含量高 | ||
甲醇自热重整 | 放热和吸热反应的耦合;简化热量管理;工作温度低;快速启动 | H2产率低;需要控制系统平衡放热和吸热过程;H2容易过氧化 | ||
甲醇分解 | 反应简便;无需额外原料的引入 | H2产率最低;CO含量过高;催化剂容易积炭失活 |
催化剂 | 反应温度/℃ | 水碳比 | 转化率/% | CO2选择性/% | CO选择性/% | H2生成速率 | 参考文献 |
---|---|---|---|---|---|---|---|
0.2%Pt/α-MoC | 190 | 1 | — | — | 0.14 | 18046 | [ |
PdO/In2O3 | 260 | 1 | 50 | 93 | — | — | [ |
CuPd/ZrO2 | 220 | 1.5 | 65 | — | 5 | 86.3mmol·h-1·gcat-1 | [ |
Pt1/PN-CeO2 | 135 | 1 | — | — | 0.05 | 199mol | [ |
2% Ni/α-MoC | 240 | 1 | — | — | 0.7 | 1805mol | [ |
Pt1/ZnO | 390 | 1.5 | 43 | — | — | — | [ |
Ru1/CeO2 | 350 | 3 | 26 | 98 | — | 139.6mL | [ |
CuFe(50∶50) | 350 | 3 | 48 | 0 | 200mmol·kgcat-1·s-1 | [ | |
Cu-Fe/硅酸盐 | 200 | — | 99 | — | 0 | 1.64μmol·s-1·gcat-1 | [ |
Cu/Ni/γ-Al2O3 | 400 | 2 | 100 | 83.3 | 11 | — | [ |
Ni0.2Cu0.8/BN | 320 | 1 | 100 | — | — | 1.8mol | [ |
PtCo/MoS2 | 220 | 3 | — | — | — | 37142mol | [ |
Cu-Zn/CeAlO3 | 320 | 6 | 98.9 | 96.1 | — | — | [ |
Cu-In2O3 | 350 | 2 | 84 | — | 5 | 3.8µmol·gCu-1·s-1 | [ |
Pt/In2O3/Al2O3 | 350 | 4 | 100 | 96.1 | 3.2 | 0.6mol·h-1·gcat-1 | [ |
Pt/In2O3 | 300 | 1 | — | 99.5 | — | 1500mol | [ |
In7Pt3 | 400 | 1 | — | 99.2 | — | 6mol·molpt-1·h-1 | [ |
InPd/In2O3 | 300 | 1 | 26 | 99 | — | 50mmol | [ |
Pt0.2K@S-1 | 400 | 3 | 45 | — | 1.9 | 61.12mmol | [ |
25Cu-AE | 400 | 2 | 100 | 89.3 | 10.4 | 1145mol·kgcat-1·h-1 | [ |
CuZnO/γ-Al2O3/Al | 225 | 2 | 60 | 90 | — | — | [ |
Pt/NiAl2O4 | 210 | 16 | 100 | 99.7 | 0.05 | 439.2μmol·min-1·gcat-1 | [ |
Pd/ZnAl2O4 | 250 | 1.1 | 60 | 97 | 3 | 11.4μmol | [ |
30Cu/CeO2 | 200 | 1.3 | 4.5 | 99.5 | — | 0.21mol | [ |
Cu/Sc2O3-ZnO | 400 | 1.5 | 100 | — | 11 | 140μmol·g-1·s-1 | [ |
CuZrAl0.4 | 220 | 1.5 | 70 | — | 0.1 | 460.1mmol·gmet-1·h-1 | [ |
10Pr-NA | 300 | 1.5 | 95 | — | — | — | [ |
18GaCuMg | 200 | 1.5 | 90 | — | 0.4 | — | [ |
Cu/ZrO2 | 260 | 1.3 | 87 | 100 | — | 260mmol·gcat-1·h-1 | [ |
Cu/ZrO2 | 270 | 2 | 40 | 99 | — | 14μmol·gCu-1·s-1 | [ |
Cu/ZnO/Al2O3 | 225 | 1.3 | 67 | — | — | — | [ |
CuAl2O4 | 320 | 1.5 | 30 | 98.95 | 1.05 | 52mol·min-1·molCu-1 | [ |
CuHAl-Ac-950 | 255 | 2.3 | 80 | — | 0.4 | — | [ |
CuNi0.05/Al2O3 | 255 | 2.3 | 90 | — | 0.8 | — | [ |
1.7Mg/Cu/Al2O3 | 255 | 2.3 | 96.5 | 96.2 | 3.8 | — | [ |
CuAl2O4 | 300 | 2.3 | 95 | — | 1.0 | — | [ |
催化剂 | 反应温度/℃ | 水碳比 | 转化率/% | CO2选择性/% | CO选择性/% | H2生成速率 | 参考文献 |
---|---|---|---|---|---|---|---|
0.2%Pt/α-MoC | 190 | 1 | — | — | 0.14 | 18046 | [ |
PdO/In2O3 | 260 | 1 | 50 | 93 | — | — | [ |
CuPd/ZrO2 | 220 | 1.5 | 65 | — | 5 | 86.3mmol·h-1·gcat-1 | [ |
Pt1/PN-CeO2 | 135 | 1 | — | — | 0.05 | 199mol | [ |
2% Ni/α-MoC | 240 | 1 | — | — | 0.7 | 1805mol | [ |
Pt1/ZnO | 390 | 1.5 | 43 | — | — | — | [ |
Ru1/CeO2 | 350 | 3 | 26 | 98 | — | 139.6mL | [ |
CuFe(50∶50) | 350 | 3 | 48 | 0 | 200mmol·kgcat-1·s-1 | [ | |
Cu-Fe/硅酸盐 | 200 | — | 99 | — | 0 | 1.64μmol·s-1·gcat-1 | [ |
Cu/Ni/γ-Al2O3 | 400 | 2 | 100 | 83.3 | 11 | — | [ |
Ni0.2Cu0.8/BN | 320 | 1 | 100 | — | — | 1.8mol | [ |
PtCo/MoS2 | 220 | 3 | — | — | — | 37142mol | [ |
Cu-Zn/CeAlO3 | 320 | 6 | 98.9 | 96.1 | — | — | [ |
Cu-In2O3 | 350 | 2 | 84 | — | 5 | 3.8µmol·gCu-1·s-1 | [ |
Pt/In2O3/Al2O3 | 350 | 4 | 100 | 96.1 | 3.2 | 0.6mol·h-1·gcat-1 | [ |
Pt/In2O3 | 300 | 1 | — | 99.5 | — | 1500mol | [ |
In7Pt3 | 400 | 1 | — | 99.2 | — | 6mol·molpt-1·h-1 | [ |
InPd/In2O3 | 300 | 1 | 26 | 99 | — | 50mmol | [ |
Pt0.2K@S-1 | 400 | 3 | 45 | — | 1.9 | 61.12mmol | [ |
25Cu-AE | 400 | 2 | 100 | 89.3 | 10.4 | 1145mol·kgcat-1·h-1 | [ |
CuZnO/γ-Al2O3/Al | 225 | 2 | 60 | 90 | — | — | [ |
Pt/NiAl2O4 | 210 | 16 | 100 | 99.7 | 0.05 | 439.2μmol·min-1·gcat-1 | [ |
Pd/ZnAl2O4 | 250 | 1.1 | 60 | 97 | 3 | 11.4μmol | [ |
30Cu/CeO2 | 200 | 1.3 | 4.5 | 99.5 | — | 0.21mol | [ |
Cu/Sc2O3-ZnO | 400 | 1.5 | 100 | — | 11 | 140μmol·g-1·s-1 | [ |
CuZrAl0.4 | 220 | 1.5 | 70 | — | 0.1 | 460.1mmol·gmet-1·h-1 | [ |
10Pr-NA | 300 | 1.5 | 95 | — | — | — | [ |
18GaCuMg | 200 | 1.5 | 90 | — | 0.4 | — | [ |
Cu/ZrO2 | 260 | 1.3 | 87 | 100 | — | 260mmol·gcat-1·h-1 | [ |
Cu/ZrO2 | 270 | 2 | 40 | 99 | — | 14μmol·gCu-1·s-1 | [ |
Cu/ZnO/Al2O3 | 225 | 1.3 | 67 | — | — | — | [ |
CuAl2O4 | 320 | 1.5 | 30 | 98.95 | 1.05 | 52mol·min-1·molCu-1 | [ |
CuHAl-Ac-950 | 255 | 2.3 | 80 | — | 0.4 | — | [ |
CuNi0.05/Al2O3 | 255 | 2.3 | 90 | — | 0.8 | — | [ |
1.7Mg/Cu/Al2O3 | 255 | 2.3 | 96.5 | 96.2 | 3.8 | — | [ |
CuAl2O4 | 300 | 2.3 | 95 | — | 1.0 | — | [ |
1 | FALCONE Pasquale Marcello, HIETE Michael, SAPIO Alessandro. Hydrogen economy and sustainable development goals: Review and policy insights[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 31: 100506. |
2 | HOSSEINI Seyed Ehsan, WAHID Mazlan Abdul. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research, 2020, 44(6): 4110-4131. |
3 | WANG Qianru, GUO Jianping, CHEN Ping. Recent progress towards mild-condition ammonia synthesis[J]. Journal of Energy Chemistry, 2019, 36: 25-36. |
4 | YANG Bing, DING Weilu, ZHANG Honghua, et al. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity[J]. Energy & Environmental Science, 2021, 14(2): 672-687. |
5 | BEPARI Sujoy, KUILA Debasish. Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts—A review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18090-18113. |
6 | 迟军, 俞红梅. 基于可再生能源的水电解制氢技术[J]. 催化学报, 2018, 39(3): 390-394. |
CHI Jun, YU Hongmei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. | |
7 | EBERLE Ulrich, FELDERHOFF Michael, Ferdi SCHÜTH. Chemical and physical solutions for hydrogen storage[J]. Angewandte Chemie (International Ed in English), 2009, 48(36): 6608-6630. |
8 | VON HELMOLT Rittmar, EBERLE Ulrich. Fuel cell vehicles: Status 2007[J]. Journal of Power Sources, 2007, 165(2): 833-843. |
9 | CHEN Luning, HOU Kaipeng, LIU Yisheng, et al. Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst[J]. Journal of the American Chemical Society, 2019, 141(45): 17995-17999. |
10 | LIN Lili, ZHOU Wu, GAO Rui, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648): 80-83. |
11 | NEUMANN Matthias, TESCHNER Detre, Axel KNOP-GERICKE, et al. Controlled synthesis and catalytic properties of supported In-Pd intermetallic compounds[J]. Journal of Catalysis, 2016, 340: 49-59. |
12 | Cátia AZENHA, LAGARTEIRA Tiago, Cecilia MATEOS-PEDRERO, et al. Production of hydrogen from methanol steam reforming using CuPd/ZrO2 catalysts-Influence of the catalytic surface on methanol conversion and CO selectivity[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17490-17499. |
13 | RANJEKAR Apoorva M, YADAV Ganapati D. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 89-113. |
14 | SCHUBERT Teresa. Production routes of advanced renewable C1 to C4 alcohols as biofuel components-a review[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(4): 845-878. |
15 | MEI Deqing, QIU Xingye, LIU Haiyu, et al. Progress on methanol reforming technologies for highly efficient hydrogen production and applications[J]. International Journal of Hydrogen Energy, 2022, 47(84): 35757-35777. |
16 | XU Xinhai, SHUAI Kaipeng, XU Ben. Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen[J]. Catalysts, 2017, 7(6): 183. |
17 | ZHANG Sai, LIU Yuxuan, ZHANG Mingkai, et al. Sustainable production of hydrogen with high purity from methanol and water at low temperatures[J]. Nature Communications, 2022, 13(1): 5527. |
18 | LIN Lili, YU Qiaolin, PENG Mi, et al. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water[J]. Journal of the American Chemical Society, 2021, 143(1): 309-317. |
19 | KANG Jeongmee, SONG Youjung, KIM Taejun, et al. Recent trends in the development of reactor systems for hydrogen production via methanol steam reforming[J]. International Journal of Hydrogen Energy, 2022, 47(6): 3587-3610. |
20 | LYTKINA A A, OREKHOVA N V, YAROSLAVTSEV A B. Catalysts for the steam reforming and electrochemical oxidation of methanol[J]. Inorganic Materials, 2018, 54(13): 1315-1329. |
21 | LUO Hui, BARRIO Jesús, SUNNY Nixon, et al. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production[J]. Advanced Energy Materials, 2021, 11(43): 2101180. |
22 | ACURIO CERDA Karen, KATHOL Mark, PUROHIT Gunjan, et al. Cationic lignin as an efficient and biorenewable antimicrobial material[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(28): 10364-10379. |
23 | YE Runping, XIAO Shuwei, LAI Qinghua, et al. Advances in enhancing the stability of Cu-based catalysts for methanol reforming[J]. Catalysts, 2022, 12(7): 747. |
24 | GU Xiangkui, QIAO Botao, HUANG Chuanqi, et al. Supported single Pt1/Au1 atoms for methanol steam reforming[J]. ACS Catalysis, 2014, 4(11): 3886-3890. |
25 | QI Zhiyuan, CHEN Luning, ZHANG Shuchen, et al. Mechanism of methanol decomposition over single-site Pt1/CeO2 catalyst: A DRIFTS study[J]. Journal of the American Chemical Society, 2021, 143(1): 60-64. |
26 | CHEN Luning, QI Zhiyuan, PENG Xinxing, et al. Insights into the mechanism of methanol steam reforming tandem reaction over CeO2 supported single-site catalysts[J]. Journal of the American Chemical Society, 2021, 143(31): 12074-12081. |
27 | LIU Lichen, CORMA Avelino. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079. |
28 | ZHANG Leilei, ZHOU Maoxiang, WANG Aiqin, et al. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms[J]. Chemical Reviews, 2020, 120(2): 683-733. |
29 | DONG Chunyang, LI Yinlong, CHENG Danyang, et al. Supported metal clusters: Fabrication and application in heterogeneous catalysis[J]. ACS Catalysis, 2020, 10(19): 11011-11045. |
30 | SHARMA Richa, KUMAR Amit, UPADHYAY Rajesh K. Bimetallic Fe-promoted catalyst for CO-free hydrogen production in high-temperature-methanol steam reforming[J]. ChemCatChem, 2019, 11(18): 4568-4580. |
31 | KUO Meite, CHEN Yunying, HUNG Weiying, et al. Synthesis of mesoporous Cu-Fe/silicates catalyst for methanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14416-14423. |
32 | FAN Feiyue, ZHANG Qi, WANG Xing, et al. A structured Cu-based/γ-Al2O3/Al plate-type catalyst for steam reforming of dimethyl ether: Self-activation behavior investigation and stability improvement[J]. Fuel, 2016, 186: 11-19. |
33 | KOVALSKII Andrey M, MATVEEV Andrei T, POPOV Zakhar I, et al. (Ni, Cu)/hexagonal BN nanohybrids—New efficient catalysts for methanol steam reforming and carbon monoxide oxidation[J]. Chemical Engineering Journal, 2020, 395: 125109. |
34 | WANG Ruiyi, LIU Huan, ZHENG Zhanfeng. Low temperature light-assisted hydrogen production from aqueous reforming ethylene glycol over Pt/Al2O3 and Pd/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12):1486-1494. |
35 | RANJEKAR Apoorva M, YADAV Ganapati D. Hydrogen production by steam reforming of methanol by Cu-Zn/CeAlO3 perovskite[J]. New Journal of Chemistry, 2023, 47(10): 4860-4870. |
36 | PLONER Kevin, SCHLICKER Lukas, GILI Albert, et al. Reactive metal-support interaction in the Cu-In2O3 system: Intermetallic compound formation and its consequences for CO2-selective methanol steam reforming[J]. Science and Technology of Advanced Materials, 2019, 20(1): 356-366. |
37 | LIU Di, Yong MEN, WANG Jinguo, et al. Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(47): 21990-21999. |
38 | HODGSON A, HAQ S. Water adsorption and the wetting of metal surfaces[J]. Surface Science Reports, 2009, 64(9): 381-451. |
39 | PHATAK Abhijit A, Nicholas DELGASS W, RIBEIRO Fabio H, et al. Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt[J]. The Journal of Physical Chemistry C, 2009, 113(17): 7269-7276. |
40 | Nicolas KÖWITSCH, THONI Lukas, KLEMMED Benjamin, et al. Unprecedented catalytic activity and selectivity in methanol steam reforming by reactive transformation of intermetallic In-Pt compounds[J]. The Journal of Physical Chemistry C, 2021, 125(18): 9809-9817. |
41 | Nicolas KÖWITSCH, BARTH Stefan, PLONER Kevin, et al. Properties of bulk In-Pt intermetallic compounds in methanol steam reforming[J]. ChemPhysChem, 2022(8):23. |
42 | RAMESHAN Christoph, LORENZ Harald, MAYR Lukas, et al. CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy[J]. Journal of Catalysis, 2012, 295(2/3): 186-194. |
43 | HAGHOFER Andreas, FERRI Davide, Karin FÖTTINGER, et al. Who is doing the job? Unraveling the role of Ga2O3 in methanol steam reforming on Pd2Ga/Ga2O3 [J]. ACS Catalysis, 2012, 2(11): 2305-2315. |
44 | SHAO Zilong, ZHANG Shunan, LIU Xiaofang, et al. Maximizing the synergistic effect between Pt0 and Pt δ + in a confined Pt-based catalyst for durable hydrogen production[J]. Applied Catalysis B: Environmental, 2022, 316: 121669. |
45 | YANG Huanhuan, CHEN Yanyan, CUI Xiaojing, et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation[J]. Angewandte Chemie, 2018, 130(7): 1854-1858. |
46 | MA Kui, TIAN Ye, ZHAO Zhijian, et al. Achieving efficient and robust catalytic reforming on dual-sites of Cu species[J]. Chemical Science, 2019, 10(9): 2578-2584. |
47 | ZHANG Guiru, ZHAO Jiali, YANG Taotao, et al. In-situ self-assembled Cu2O/ZnO core-shell catalysts synergistically enhance the durability of methanol steam reforming[J]. Applied Catalysis A: General, 2021, 616: 118072. |
48 | CUI Zhonghui, SONG Song, LIU Huibin, et al. Synergistic effect of Cu+ single atoms and Cu nanoparticles supported on alumina boosting water-gas shift reaction[J]. Applied Catalysis B: Environmental, 2022, 313: 121468. |
49 | RUANO Daniel, CORED Jorge, Cátia AZENHA, et al. Dynamic structure and subsurface oxygen formation of a working copper catalyst under methanol steam reforming conditions: An in situ time-resolved spectroscopic study[J]. ACS Catalysis, 2019, 9(4): 2922-2930. |
50 | MAYR Lukas, Bernhard KlÖTZER, ZEMLYANOV Dmitry, et al. Steering of methanol reforming selectivity by zirconia-copper interaction[J]. Journal of Catalysis, 2015, 321: 123-132. |
51 | LI Didi, LI Yi, LIU Xiaohui, et al. NiAl2O4 spinel supported Pt catalyst: High performance and origin in aqueous-phase reforming of methanol[J]. ACS Catalysis, 2019, 9(10): 9671-9682. |
52 | WANG Xiuyi, LI Didi, GAO Zirui, et al. The nature of interfacial catalysis over Pt/NiAl2O4 for hydrogen production from methanol reforming reaction[J]. Journal of the American Chemical Society, 2023, 145(2): 905-918. |
53 | LIU Liang, LIN Yangjian, HU Yanru, et al. ZnAl2O4 spinel-supported PdZnβ catalyst with parts per million Pd for methanol steam reforming[J]. ACS Catalysis, 2022, 12(4): 2714-2721. |
54 | JIN Shiqing, LI Didi, WANG Zhen, et al. Dynamics of the Cu/CeO2 catalyst during methanol steam reforming[J]. Catalysis Science & Technology, 2022, 12(23): 7003-7009. |
55 | NING Jing, ZHOU Yan, SHEN Wenjie. Atomically dispersed copper species on ceria for the low-temperature water-gas shift reaction[J]. Science China Chemistry, 2021, 64(7): 1103-1110. |
56 | LYKHACH Yaroslava, KOZLOV Sergey M, Tomáš SKÁLA, et al. Counting electrons on supported nanoparticles[J]. Nature Materials, 2016, 15(3): 284-288. |
57 | ARAIZA Daniel G, Antonio GÓMEZ-CORTÉS, Gabriela DÍAZ. Reactivity of methanol over copper supported on well-shaped CeO2: A TPD-DRIFTS study[J]. Catalysis Science & Technology, 2017, 7(22): 5224-5235. |
58 | CHEN Fei, ZHANG Peipei, ZENG Yan, et al. Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method[J]. Applied Catalysis B: Environmental, 2020, 279: 119382. |
59 | PLONER Kevin, WATSCHINGER Maximilian, NEZHAD Parastoo Delir Kheyrollahi, et al. Mechanistic insights into the catalytic methanol steam reforming performance of Cu/ZrO2 catalysts by in situ and operando studies[J]. Journal of Catalysis, 2020, 391: 497-512. |
60 | PU Yunchuan, LI Shuirong, YAN Shuai, et al. An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming[J]. Fuel, 2019, 241: 607-615. |
61 | MATEOS-PEDRERO C, AZENHA C, D-A Pacheco Tanaka, et al. The influence of the support composition on the physicochemical and catalytic properties of Cu catalysts supported on Zirconia-Alumina for methanol steam reforming[J]. Applied Catalysis B: Environmental, 2020, 277: 119243. |
62 | LU Jichang, LEI Yanqiu, WAN Gengping, et al. Weakening the metal-support strong interaction to enhance catalytic performances of alumina supported Ni-based catalysts for producing hydrogen[J]. Applied Catalysis B: Environmental, 2020, 263: 118177. |
63 | SUN Zhao, LIU Junpeng, ZHANG Rongjun, et al. Fabricating Ga doped and MgO embedded nanomaterials for sorption-enhanced steam reforming of methanol[J]. Journal of Materials Chemistry A, 2022, 10(13): 7300-7313. |
64 | WANG Lucun, LIU Qian, CHEN Miao, et al. Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique[J]. The Journal of Physical Chemistry C, 2007, 111(44): 16549-16557. |
65 | RHODES Michael D, Bell Alexis T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies[J]. Journal of Catalysis, 2005, 233(1): 198-209. |
66 | RHODEs Michael D, Pokrovski Konstantin A, Bell Alexis T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part Ⅱ. Transient-response infrared studies[J]. Journal of Catalysis, 2005, 233(1): 210-220. |
67 | PLONER Kevin, NEZHAD Parastoo Delir Kheyrollahi, GILI Albert, et al. The sol-gel autocombustion as a route towards highly CO2-selective, active and long-term stable Cu/ZrO2 methanol steam reforming catalysts[J]. Materials Chemistry Frontiers, 2021, 5(13): 5093-5105. |
68 | Eva-Maria KÖCK, KOGLER Michaela, BIELZ Thomas, et al. In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2 [J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2013, 117(34): 17666-17673. |
69 | Eva-Maria KÖCK, KOGLER Michaela, Bernhard KLÖTZER, et al. Structural and electrochemical properties of physisorbed and chemisorbed water layers on the ceramic oxides Y2O3, YSZ, and ZrO2 [J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16428-16443. |
70 | Eva-Maria KÖCK, KOGLER Michaela, Thomas GÖTSCH, et al. Surface chemistry of pure tetragonal ZrO2 and gas-phase dependence of the tetragonal-to-monoclinic ZrO2 transformation[J]. Dalton Transactions, 2017, 46(14): 4554-4570. |
71 | HENDERSON Michael A. Complexity in the decomposition of formic acid on the TiO2(110) surface[J]. The Journal of Physical Chemistry B, 1997, 101(2): 221-229. |
72 | XU Xinyi, LAN Tian, ZHAO Guofeng, et al. Interface-hydroxyl enabling methanol steam reforming toward CO-free hydrogen production over inverse ZrO2/Cu catalyst[J]. Applied Catalysis B: Environmental, 2023, 334: 122839. |
73 | LI Didi, XU Fang, TANG Xuan, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol[J]. Nature Catalysis, 2022, 5(2): 99-108. |
74 | JIN Shiqing, ZHANG Zekai, LI Didi, et al. Alcohol-induced strong metal-support interactions in a supported copper/ZnO catalyst[J]. Angewandte Chemie International Edition, 2023, 62(21): e202301563. |
75 | WANG Hai, HUI Yu, NIU Yiming, et al. Construction of Ptδ+-O(H)-Ti3+ species for efficient catalytic production of hydrogen[J]. ACS Catalysis, 2023, 13(15): 10500-10510. |
76 | TABAKOVA T, IDAKIEV V, AVGOUROPOULOS G, et al. Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor[J]. Applied Catalysis A: General, 2013, 451: 184-191. |
77 | KIM Nam Dong, PARK Jae Ryul, PARK Dae Sung, et al. Promoter effect of Pd in CuCr2O4 catalysts on the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Green Chemistry, 2012, 14(9): 2638-2646. |
78 | 李光俊, 郗宏娟, 张素红, 等. 尖晶石CuM2O4(M=Al、Fe、Cr)催化甲醇重整反应的特性[J]. 燃料化学学报, 2012, 40(12): 1466-1471. |
LI Guangjun, XI Hongjuan, ZHANG Suhong, et al. Catalytic characteristics of spinel CuM2O4(M=Al, Fe, Cr) for the steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1466-1471. | |
79 | HUANG Yung-Han, WANG Sea-Fue, TSAI An-Pang, et al. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)[J]. Ceramics International, 2014, 40(3): 4541-4551. |
80 | LIU Yajie, QIN Fajie, HOU Xiaoning, et al. Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 665-671. |
81 | XI Hongjuan, HOU Xiaoning, LIU Yajie, et al. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angewandte Chemie International Edition, 2014, 53(44): 11886-11889. |
82 | LIU Yajie, QING Shaojun, HOU Xiaoning, et al. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catalysis Science & Technology, 2017, 7(21): 5069-5078. |
83 | QING Shaojun, HOU Xiaoning, LIU Yajie, et al. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chemical Communications, 2018, 54(86): 12242-12245. |
84 | LIU Yajie, QING Shaojun, HOU Xiaoning, et al. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018, 10(24): 5698-5706. |
85 | HOU Xiaoning, QING Shaojun, LIU Yajie, et al. Cu1- x Mg x Al3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming[J]. Fuel, 2021, 284: 119041. |
86 | HOU Xiaoning, QING Shaojun, LIU Yajie, et al. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. International Journal of Hydrogen Energy, 2020, 45(1): 477-489. |
87 | LIU Yajie, KANG Hefei, HOU Xiaoning, et al. Sustained release catalysis: Dynamic copper releasing from stoichiometric spinel CuAl2O4 during methanol steam reforming[J]. Applied Catalysis B: Environmental, 2023, 323: 122043. |
[1] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[2] | XIANG Haoyin, CHEN Liangyong. Evaluation of Ni, Ce, Zn and Cu modified Fe2O3/Al2O3 oxygen carriers for methane-fueled chemical looping hydrogen generation process [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4320-4332. |
[3] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[4] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
[5] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
[6] | CHEN Liang, LUO Dongmei, WANG Zhenghao, ZHONG Shan, TANG Siyang, LIANG Bin. Research progress of industrial by-product gas-fueled chemical looping hydrogen generation technology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3729-3746. |
[7] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[8] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[9] | SHI Jiating, WANG Hui, PU Kaikai, ZHAO Ting, NIE Lijun, ZHENG Na, GAO Yuhang, XUE Kunkun, SHI Jianhui. Enhanced hydrogen peroxide production performance in visible light from ultra-thin g-C3N4 nanosheets with carbon vacancies [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4148-4154. |
[10] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[11] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
[12] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[13] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[14] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
[15] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |