Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5369-5380.DOI: 10.16085/j.issn.1000-6613.2023-1527
• Chemical processes and equipment • Previous Articles
ZONG Huajian1(), LI Ying1(), ZHANG Xiangping2
Received:
2023-09-01
Revised:
2023-11-22
Online:
2024-10-29
Published:
2024-10-15
Contact:
LI Ying
通讯作者:
李英
作者简介:
纵华健(2000—),男,硕士研究生,研究方向为化工过程模拟。E-mail:2422379654@qq.com。
基金资助:
CLC Number:
ZONG Huajian, LI Ying, ZHANG Xiangping. Energy integration and carbon flow analysis of process of CO2 chemical transformation to dimethyl carbonate and ethylene glycol[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5369-5380.
纵华健, 李英, 张香平. CO2化学转化碳酸二甲酯/乙二醇的能量集成和碳流分析[J]. 化工进展, 2024, 43(10): 5369-5380.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1527
组分i | 组分j | aij | aji | bij | bji | cij | cji |
---|---|---|---|---|---|---|---|
甲醇 | DMC | -2.0637 | 2.6639 | 642.56 | -1104.8 | 0 | 0 |
甲醇 | EC | -0.5409 | 15.892 | 4589.3 | -1278.9 | -2.2771 | -2.0488 |
甲醇 | EG | -32.587 | 2.2712 | 10000 | -599.11 | 0 | 0 |
DMC | EC | 2.5273 | -6.7598 | 167.34 | 442.34 | -0.7321 | 1.0398 |
DMC | EG | 0 | 0 | -236.13 | -146.88 | 0 | 0 |
EC | EG | 0 | 0 | -275.66 | -27.96 | 0 | 0 |
组分i | 组分j | aij | aji | bij | bji | cij | cji |
---|---|---|---|---|---|---|---|
甲醇 | DMC | -2.0637 | 2.6639 | 642.56 | -1104.8 | 0 | 0 |
甲醇 | EC | -0.5409 | 15.892 | 4589.3 | -1278.9 | -2.2771 | -2.0488 |
甲醇 | EG | -32.587 | 2.2712 | 10000 | -599.11 | 0 | 0 |
DMC | EC | 2.5273 | -6.7598 | 167.34 | 442.34 | -0.7321 | 1.0398 |
DMC | EG | 0 | 0 | -236.13 | -146.88 | 0 | 0 |
EC | EG | 0 | 0 | -275.66 | -27.96 | 0 | 0 |
上下限 | 反应精馏塔 | 高压塔 | 低压塔 | |||
---|---|---|---|---|---|---|
压力/bar | 回流比 | 压力/bar | 回流比 | 压力/bar | 回流比 | |
上限 | 0.1 | 0.2 | 10 | 0.2 | 1 | 3 |
下限 | 0.3 | 1.0 | 20 | 1.2 | 5 | 9 |
上下限 | 反应精馏塔 | 高压塔 | 低压塔 | |||
---|---|---|---|---|---|---|
压力/bar | 回流比 | 压力/bar | 回流比 | 压力/bar | 回流比 | |
上限 | 0.1 | 0.2 | 10 | 0.2 | 1 | 3 |
下限 | 0.3 | 1.0 | 20 | 1.2 | 5 | 9 |
流股 | 温度 /℃ | 压力 /bar | 摩尔流量 /kmol·h-1 | 质量流量/kg·h-1 | ||||
---|---|---|---|---|---|---|---|---|
EO | CO2 | CH4 | C2H4 | EC | ||||
S1-1 | 25 | 20 | 45 | 0 | 0 | 0 | 0 | 3962.8 |
S1-2 | 50 | 20 | 169.5 | 220.3 | 126.1 | 1603.7 | 1729.8 | 0 |
S1-3 | 39.5 | 20 | 160 | 6.26 | 119.7 | 1584 | 1639.2 | 0.06 |
S1-4 | 58.1 | 20.2 | 54.47 | 214 | 6.38 | 19.76 | 90.67 | 3962.7 |
S1-5 | -111.4 | 5 | 4.61 | 0.05 | 6.38 | 19.76 | 90.67 | 0 |
S1-6 | 171 | 5 | 49.86 | 213.9 | 0 | 0 | 0 | 3962.8 |
S1-7 | 120 | 20 | 5.03 | 0 | 221.4 | 0 | 0 | 0 |
S1-8 | 120 | 20 | 54.72 | 0.15 | 212.3 | 0 | 0 | 4393.5 |
S1-9 | 105 | 0.98 | 4.69 | 0.09 | 204.65 | 0 | 0 | 3.15 |
S1-10 | 105 | 0.98 | 50.03 | 0.06 | 7.66 | 0 | 0 | 4390.4 |
S1-11 | -99.5 | 0.5 | 0.17 | 0.06 | 7.66 | 0 | 0 | 0 |
S1-12 | 219.5 | 0.5 | 49.855 | 0 | 0 | 0 | 0 | 4390.4 |
流股 | 温度 /℃ | 压力 /bar | 摩尔流量 /kmol·h-1 | 质量流量/kg·h-1 | ||||
---|---|---|---|---|---|---|---|---|
EO | CO2 | CH4 | C2H4 | EC | ||||
S1-1 | 25 | 20 | 45 | 0 | 0 | 0 | 0 | 3962.8 |
S1-2 | 50 | 20 | 169.5 | 220.3 | 126.1 | 1603.7 | 1729.8 | 0 |
S1-3 | 39.5 | 20 | 160 | 6.26 | 119.7 | 1584 | 1639.2 | 0.06 |
S1-4 | 58.1 | 20.2 | 54.47 | 214 | 6.38 | 19.76 | 90.67 | 3962.7 |
S1-5 | -111.4 | 5 | 4.61 | 0.05 | 6.38 | 19.76 | 90.67 | 0 |
S1-6 | 171 | 5 | 49.86 | 213.9 | 0 | 0 | 0 | 3962.8 |
S1-7 | 120 | 20 | 5.03 | 0 | 221.4 | 0 | 0 | 0 |
S1-8 | 120 | 20 | 54.72 | 0.15 | 212.3 | 0 | 0 | 4393.5 |
S1-9 | 105 | 0.98 | 4.69 | 0.09 | 204.65 | 0 | 0 | 3.15 |
S1-10 | 105 | 0.98 | 50.03 | 0.06 | 7.66 | 0 | 0 | 4390.4 |
S1-11 | -99.5 | 0.5 | 0.17 | 0.06 | 7.66 | 0 | 0 | 0 |
S1-12 | 219.5 | 0.5 | 49.855 | 0 | 0 | 0 | 0 | 4390.4 |
流股 | 温度 /℃ | 压力 /bar | 摩尔流量 /kmol·h-1 | 质量流量/kg·h-1 | |||
---|---|---|---|---|---|---|---|
甲醇 | EC | DMC | EG | ||||
S2-1 | 25 | 0.4 | 49.855 | 0 | 4390.4 | 0 | 0 |
S2-2 | 25 | 0.1 | 99.71 | 3194.9 | 0 | 0 | 0 |
S2-3 | 19.2 | 1 | 258.04 | 6131.3 | 0 | 6007.1 | 0 |
S2-4 | 19.9 | 16.4 | 258.04 | 6131.3 | 0 | 6007.1 | 0 |
S2-5 | 160.6 | 16.3 | 258.04 | 6131.3 | 0 | 6007.1 | 0 |
S2-6 | 132.2 | 0.1 | 49.86 | 0.16 | 0.18 | 0 | 3094.3 |
S2-7 | 157.2 | 16.3 | 198.69 | 6062.4 | 0 | 854.5 | 0 |
S2-8 | 206.1 | 16.3 | 59.35 | 68.8 | 0 | 5152.6 | 0 |
S2-9 | 112.4 | 2.2 | 59.35 | 68.8 | 0 | 5152.6 | 0 |
S2-10 | 97.3 | 2.2 | 9.50 | 68.8 | 0 | 662.0 | 0 |
S2-11 | 116.8 | 2.2 | 49.853 | 0.008 | 0 | 4490.69 | 0 |
流股 | 温度 /℃ | 压力 /bar | 摩尔流量 /kmol·h-1 | 质量流量/kg·h-1 | |||
---|---|---|---|---|---|---|---|
甲醇 | EC | DMC | EG | ||||
S2-1 | 25 | 0.4 | 49.855 | 0 | 4390.4 | 0 | 0 |
S2-2 | 25 | 0.1 | 99.71 | 3194.9 | 0 | 0 | 0 |
S2-3 | 19.2 | 1 | 258.04 | 6131.3 | 0 | 6007.1 | 0 |
S2-4 | 19.9 | 16.4 | 258.04 | 6131.3 | 0 | 6007.1 | 0 |
S2-5 | 160.6 | 16.3 | 258.04 | 6131.3 | 0 | 6007.1 | 0 |
S2-6 | 132.2 | 0.1 | 49.86 | 0.16 | 0.18 | 0 | 3094.3 |
S2-7 | 157.2 | 16.3 | 198.69 | 6062.4 | 0 | 854.5 | 0 |
S2-8 | 206.1 | 16.3 | 59.35 | 68.8 | 0 | 5152.6 | 0 |
S2-9 | 112.4 | 2.2 | 59.35 | 68.8 | 0 | 5152.6 | 0 |
S2-10 | 97.3 | 2.2 | 9.50 | 68.8 | 0 | 662.0 | 0 |
S2-11 | 116.8 | 2.2 | 49.853 | 0.008 | 0 | 4490.69 | 0 |
项目 | 能量集成前 | 能量集成后 | 对比/% |
---|---|---|---|
热公用工程/kW | 7418.4 | 4425.9 | -40.34 |
冷公用工程/kW | 7292.7 | 4297.2 | -41.07 |
总换热面积/m2 | 268.74 | 322.08 | 19.85 |
总投资成本/103USD | 177.07 | 226.05 | 27.66 |
加热操作费/103USD·a-1 | 536.89 | 329.77 | -38.58 |
冷却操作费/103USD·a-1 | 562.47 | 542.51 | -3.54 |
年度总成本/103USD·a-1 | 1146.10 | 927.29 | -19.09 |
项目 | 能量集成前 | 能量集成后 | 对比/% |
---|---|---|---|
热公用工程/kW | 7418.4 | 4425.9 | -40.34 |
冷公用工程/kW | 7292.7 | 4297.2 | -41.07 |
总换热面积/m2 | 268.74 | 322.08 | 19.85 |
总投资成本/103USD | 177.07 | 226.05 | 27.66 |
加热操作费/103USD·a-1 | 536.89 | 329.77 | -38.58 |
冷却操作费/103USD·a-1 | 562.47 | 542.51 | -3.54 |
年度总成本/103USD·a-1 | 1146.10 | 927.29 | -19.09 |
工艺 | DMC纯度/% | EG纯度/% | 热量消耗/kW·h·(kg DMC)-1 | 参考文献 | |
---|---|---|---|---|---|
集成前 | 集成后 | ||||
EC路线 | 99.16 (99.2) | 99.99 (99.9) | 2.54 | — | [ |
尿素路线 | 99.74 (99.7) | — | 16.49 | — | [ |
BAYER法 | 100.0 (100.0) | — | 2.93 | — | [ |
酯交换-变压精馏 | 100.0 | 99.82 | 2.44 | 1.25 | [ |
酯交换-变压精馏 | 99.99 | 99.80 | 11.08 | — | [ |
酯交换-苯酚萃取精馏 | 99.80 | 99.80 | 4.34 | — | [ |
酯交换-苯胺萃取精馏 | 99.50 | 99.50 | 2.78 | — | [ |
酯交换-苯胺萃取精馏 | 99.50 | 99.50 | — | 1.85 | [ |
本文 | 99.999 | 99.986 | 1.76 | 1.10 | 模拟 |
工艺 | DMC纯度/% | EG纯度/% | 热量消耗/kW·h·(kg DMC)-1 | 参考文献 | |
---|---|---|---|---|---|
集成前 | 集成后 | ||||
EC路线 | 99.16 (99.2) | 99.99 (99.9) | 2.54 | — | [ |
尿素路线 | 99.74 (99.7) | — | 16.49 | — | [ |
BAYER法 | 100.0 (100.0) | — | 2.93 | — | [ |
酯交换-变压精馏 | 100.0 | 99.82 | 2.44 | 1.25 | [ |
酯交换-变压精馏 | 99.99 | 99.80 | 11.08 | — | [ |
酯交换-苯酚萃取精馏 | 99.80 | 99.80 | 4.34 | — | [ |
酯交换-苯胺萃取精馏 | 99.50 | 99.50 | 2.78 | — | [ |
酯交换-苯胺萃取精馏 | 99.50 | 99.50 | — | 1.85 | [ |
本文 | 99.999 | 99.986 | 1.76 | 1.10 | 模拟 |
工艺 | 净CO2排放/kg CO2·(kg DMC)-1 | 参考文献 |
---|---|---|
EC路线 | 0.45 | [ |
尿素路线 | 1.28 | [ |
膜生物反应器 | 0.52 | [ |
渗透汽化 | 0.67 | [ |
脱水反应精馏 | 0.71 | [ |
CO2与MeOH直接合成 | 0.34 | [ |
本文 | 0.31 | 模拟 |
工艺 | 净CO2排放/kg CO2·(kg DMC)-1 | 参考文献 |
---|---|---|
EC路线 | 0.45 | [ |
尿素路线 | 1.28 | [ |
膜生物反应器 | 0.52 | [ |
渗透汽化 | 0.67 | [ |
脱水反应精馏 | 0.71 | [ |
CO2与MeOH直接合成 | 0.34 | [ |
本文 | 0.31 | 模拟 |
1 | 张凡, 王树众, 李艳辉, 等. 中国制造业碳排放问题分析与减排对策建议[J]. 化工进展, 2022, 41(3): 1645-1653. |
ZHANG Fan, WANG Shuzhong, LI Yanhui, et al. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653. | |
2 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
GONG Jinlong. A brief overview on recent progress on chemical conversion of CO2 [J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
3 | Hrvoje MIKULČIĆ, RIDJAN SKOV Iva, DOMINKOVIĆ Dominik Franjo, et al. Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2 [J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109338. |
4 | 姚向阳, 张彦, 高嵩, 等. 面向可持续发展的二氧化碳化学研究进展[J]. 华中师范大学学报(自然科学版), 2019, 53(6): 834-846. |
YAO Xiangyang, ZHANG Yan, GAO Song, et al. Progress on carbon dioxide chemistry towards sustainable development[J]. Journal of Central China Normal University (Natural Sciences), 2019, 53(6): 834-846. | |
5 | YANG Na, WANG Rui. Sustainable technologies for the reclamation of greenhouse gas CO2 [J]. Journal of Cleaner Production, 2015, 103: 784-792. |
6 | FIORANI G, PEROSA A, SELVA M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables[J]. Green Chemistry, 2018, 20(2): 288-322. |
7 | XU Baohua, WANG Jinquan, SUN Jian, et al. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: A multi-scale approach[J]. Green Chemistry, 2015, 17(1): 108-122. |
8 | TUNDO P, MUSOLINO M, ARICÒ F. The reactions of dimethyl carbonate and its derivatives[J]. Green Chemistry, 2018, 20(1): 28-85. |
9 | SONG Qingwen, ZHOU Zhihua, HE Liangnian. Efficient, selective and sustainable catalysis of carbon dioxide[J]. Green Chemistry, 2017, 19(16): 3707-3728. |
10 | ZHANG Suojiang, SUN Jian, ZHANG Xiaochun, et al. Ionic liquid-based green processes for energy production[J]. Chemical Society Reviews, 2014, 43(22): 7838-7869. |
11 | PETER Goodrich, NIMAL Gunaratne H Q, JOHAN Jacquemin, et al. Sustainable cyclic carbonate production, utilizing carbon dioxide and azolate ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5635-5641. |
12 | YANG Chaokun, LIU Mengshuai, ZHANG Jiaxu, et al. Facile synthesis of DBU-based ionic liquids cooperated with ZnI2 as catalysts for efficient cycloaddition of CO2 to epoxides under mild and solvent-free conditions[J]. Molecular Catalysis, 2018, 450: 39-45. |
13 | LIU Mengshuai, LI Xin, LIANG Lin, et al. Protonated triethanolamine as multi-hydrogen bond donors catalyst for efficient cycloaddition of CO2 to epoxides under mild and cocatalyst-free conditions[J]. Journal of CO2 Utilization, 2016, 16: 384-390. |
14 | WANG Lin, ZHANG Guangyou, KODAMA Koichi, et al. An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO2 into cyclic carbonates under mild conditions[J]. Green Chemistry, 2016, 18(5): 1229-1233. |
15 | 郭艳东, 佟佳欢, 刘晓敏, 等. 负载型离子液体的研究进展及发展趋势[J]. 中国科学(化学), 2016, 46(12): 1305-1316. |
GUO Yandong, TONG Jiahuan, LIU Xiaomin, et al. Recent advances and development of supported ionic liquids[J]. SCIENTIA SINICA Chimica, 2016, 46(12): 1305-1316. | |
16 | CHENG Weiguo, CHEN Xi, SUN Jian, et al. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides[J]. Catalysis Today, 2013, 200: 117-124. |
17 | 贺玥玥, 顾晓华, 潘子鹤, 等. KF/MgO催化醇解制备碳酸二甲酯的超声强化研究[J]. 石油化工, 2019, 48(10): 996-1000. |
HE Yueyue, GU Xiaohua, PAN Zihe, et al. Enhancement of ultrasonic on preparation of dimethyl carbonate through alcoholysis catalyzed by KF/MgO[J]. Petrochemical Technology, 2019, 48(10): 996-1000. | |
18 | WANG San-Jang, YU Cheng-Ching, HUANG Hsiao-Ping. Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation[J]. Computers & Chemical Engineering, 2010, 34(3): 361-373. |
19 | 董营, 肖颖, 黄耀东, 等. 萃取精馏分离碳酸二甲酯-乙醇二元共沸物[J]. 化工进展, 2013, 32(4): 750-756, 768. |
DONG Ying, XIAO Ying, HUANG Yaodong, et al. Separation of binary azeotrope ethanol-dimethyl carbonate by extractive distillation[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 750-756, 768. | |
20 | 李文秀, 连利燕, 张志刚, 等. 萃取精馏分离碳酸二甲酯和甲醇共沸物[J]. 化学工程, 2012, 40(7): 14-17, 25. |
LI Wenxiu, LIAN Liyan, ZHANG Zhigang, et al. Separation of dimethyl carbonate-methanol mixture by extractive distillation[J]. Chemical Engineering, 2012, 40(7): 14-17, 25. | |
21 | HU Chi-Chih, CHENG Shueh-Hen. Development of alternative methanol/dimethyl carbonate separation systems by extractive distillation—A holistic approach[J]. Chemical Engineering Research and Design, 2017, 127: 189-214. |
22 | HSU Kai-Yi, HSIAO Yuan-Chang, I-Lung CHIEN. Design and control of dimethyl carbonate-methanol separation via extractive distillation in the dimethyl carbonate reactive-distillation process[J]. Industrial & Engineering Chemistry Research, 2010, 49(2): 735-749. |
23 | SHI Li, WANG San-Jang, WONG David Shan-Hill, et al. Novel process design of synthesizing propylene carbonate for dimethyl carbonate production by indirect alcoholysis of urea[J]. Industrial & Engineering Chemistry Research, 2017, 56(40): 11531-11544. |
24 | ZHANG Qingrui, PENG Jiayao, ZHANG Kai. Separation of an azeotropic mixture of dimethyl carbonate and methanol via partial heat integration pressure swing distillation[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(1): 50-64. |
25 | GU Xincheng, ZHANG Xiaochun, YANG Zifeng, et al. Technical-environmental assessment of CO2 conversion process to dimethyl carbonate/ethylene glycol[J]. Journal of Cleaner Production, 2021, 288: 125598. |
26 | Danielle BALLIVET-TKATCHENKO, CHAMBREY Stéphane, KEISKI Riitta, et al. Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: Characterization of a key organotin oxide intermediate[J]. Catalysis Today, 2006, 115(1/2/3/4): 80-87. |
27 | Ondřej VOPIČKA, Kryštof PILNÁČEK, FRIESS Karel. Separation of methanol-dimethyl carbonate vapour mixtures with PDMS and PTMSP membranes[J]. Separation and Purification Technology, 2017, 174: 1-11. |
28 | LI Qing, KISS Anton A. Novel pervaporation-assisted pressure swing reactive distillation process for intensified synthesis of dimethyl carbonate[J]. Chemical Engineering and Processing: Process Intensification, 2021, 162: 108358. |
29 | SOUZA Lorena F S, FERREIRA Priscila R R, DE MEDEIROS José Luiz, et al. Production of DMC from CO2 via indirect route: Technical-economical-environmental assessment and analysis[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 62-69. |
30 | KONGPANNA Pichayapan, PAVARAJARN Varong, GANI Rafiqul, et al. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production[J]. Chemical Engineering Research and Design, 2015, 93: 496-510. |
31 | YU Bor-Yih, CHEN Mengkai, I-Lung CHIEN. Assessment on CO2 utilization through rigorous simulation: Converting CO2 to dimethyl carbonate[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 639-652. |
32 | 吴青海, 任天瑞. 固载化离子液体催化环氧乙烷和二氧化碳合成碳酸乙烯酯[J]. 过程工程学报, 2012, 12(2): 302-309. |
WU Qinghai, REN Tianrui. Synthesis of ethylene carbonate via carbon dioxide and ethylene oxide catalyzed by immobilized ionic liquid[J]. The Chinese Journal of Process Engineering, 2012, 12(2): 302-309. | |
33 | HE Yueyue, CHENG Huaigang, PAN Zihe, et al. Ultrasonic process intensification during the preparation of dimethyl carbonate based on the alcoholysis of ethylene carbonate and the kinetic behavior of dimethyl carbonate[J]. Reaction Chemistry & Engineering, 2021, 6(11): 2170-2180. |
34 | FANG Yunjin, XIAO Wende. Experimental and modeling studies on a homogeneous reactive distillation system for dimethyl carbonate synthesis by transesterification[J]. Separation and Purification Technology, 2004, 34(1/2/3): 255-263. |
35 | 陈嵩嵩, 董丽, 张军平, 等. 酯交换法制备碳酸二甲酯过程模拟与系统㶲分析[J]. 过程工程学报, 2018, 18(6): 1307-1314. |
CHEN Songsong, DONG Li, ZHANG Junping, et al. Process simulation and system exergy analysis for dimethyl carbonate production with transesterification[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1307-1314. | |
36 | 张莘, 高伟, 齐鸣, 等. 基于多目标优化精馏系统综述[J]. 化工进展, 2019, 38(S1): 1-9. |
ZHANG Shen, GAO Wei, QI Ming, et al. A review of optimization rectification systems based on multi-objective[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 1-9. | |
37 | 翟建, 刘育良, 李鲁闽, 等. 萃取精馏分离苯/环己烷共沸体系模拟与优化[J]. 化工学报, 2015, 66(9): 3570-3579. |
ZHAI Jian, LIU Yuliang, LI Lumin, et al. Simulation and optimization of extractive distillation for separation of azeotropic benzene/cyclohexane system[J]. CIESC Journal, 2015, 66(9): 3570-3579. | |
38 | 李帅. 基于NSGA-Ⅱ的蒸汽动力系统经济性与环境影响优化[D]. 大连: 大连理工大学, 2019. |
LI Shuai. Optimization of economic and environmental impact for steam power plant based on NSGA-Ⅱ[D]. Dalian: Dalian University of Technology, 2019. | |
39 | 葛玉林. 常减压蒸馏流程模拟与优化及换热网络综合[D]. 大连: 大连理工大学, 2007. |
GE Yulin. Flow simulation, optimization, and heat exchangers network synthesis of atmosphere-vacuum distillation[D]. Dalian: Dalian University of Technology, 2007. | |
40 | GADALLA M, OLUJIĆ Ž, DE RIJKE A, et al. Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures[J]. Energy, 2005, 31(13): 2409-2417. |
41 | LEE Tzong-Shing, LU Wanchen. An evaluation of empirically-based models for predicting energy performance of vapor-compression water chillers[J]. Applied Energy, 2010, 87(11): 3486-3493. |
42 | SEIDER W, SEADER J, LEWIN D. Product & process design principles-synthesis, analysis, and evaluation[M]. USA: John Wiley and Sons, Inc., 2006: 565-567. |
43 | MRAYED Sabri, SHAMS Mohamed BIN, Mohammed AL-KHAYYAT, et al. Application of pinch analysis to improve the heat integration efficiency in a crude distillation unit[J]. Cleaner Engineering and Technology, 2021, 4: 100168. |
44 | KONGPANNA Pichayapan, BABI Deenesh K, PAVARAJARN Varong, et al. Systematic methods and tools for design of sustainable chemical processes for CO2 utilization[J]. Computers & Chemical Engineering, 2016, 87: 125-144. |
45 | WU Tsai-Wei, I-Lung CHIEN. CO2 utilization feasibility study: Dimethyl carbonate direct synthesis process with dehydration reactive distillation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1234-1248. |
46 | OHNO Hajime, IKHLAYEL Mahdi, TAMURA Masazumi, et al. Direct dimethyl carbonate synthesis from CO2 and methanol catalyzed by CeO2 and assisted by 2-cyanopyridine: A cradle-to-gate greenhouse gas emission study[J]. Green Chemistry, 2021, 23(1): 457-469. |
[1] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
[2] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
[3] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
[4] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[5] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[6] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[7] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[8] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[9] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[10] | HAN Wentao, HAN Zhenwei, LI Hong, GAO Xin, LI Xingang. Simulation of reactive distillation for the synthesis of ethyl levulinate and energy saving optimization of dividing wall column [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1759-1769. |
[11] | CHEN Danyang, ZHU Jianyu, WU Qin, WANG Ziqing, ZHANG Jinli. KF/MgO catalyzed transesterification of glycerol and dimethyl carbonate to glycerol carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2082-2089. |
[12] | ZHU Changhui, ZHU Wenchao, LUO Jia, TIAN Baohe, SUN Jialin, ZOU Zhiyun. Recent advances in microwave-intensified transesterification for biodiesel preparation [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5145-5154. |
[13] | LI Dan, YANG Siyu, QIAN Yu. Syngas cryogenic separation process combined with lithium bromide absorption refrigeration and organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5236-5246. |
[14] | YUE Qianqian, GAO Lijing, XIAO Guomin, WEI Ruiping, LEI Yan. Process of the reactor and progress of biodiesel continuous production [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 81-88. |
[15] | LAI Jianing, GAO Xin, CONG Haifeng, LI Hong, LI Xingang. Simulation and optimization of synthesizing solketal by reactive distillation process [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3584-3590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |