Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5353-5368.DOI: 10.16085/j.issn.1000-6613.2023-1651
• Chemical processes and equipment • Previous Articles
FU Xuan1,2,3(), XING Xiaokai1,2,3(), LI Xinze2,3
Received:
2023-09-18
Revised:
2023-12-14
Online:
2024-10-29
Published:
2024-10-15
Contact:
XING Xiaokai
通讯作者:
邢晓凯
作者简介:
付璇(1987—),女,博士研究生,研究方向为油气管道腐蚀与防腐。E-mail:fuxuan@cupk.edu.cn。
基金资助:
CLC Number:
FU Xuan, XING Xiaokai, LI Xinze. Corrosion characteristics of transportation pipelines in oil-water emulsion with CO2: A review[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5353-5368.
付璇, 邢晓凯, 李欣泽. 油水混输管道CO2腐蚀特性研究进展[J]. 化工进展, 2024, 43(10): 5353-5368.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1651
研究装置 | 装置优势 | 装置缺点 | 常用表征方式 | 典型研究 | 主要研究结论 |
---|---|---|---|---|---|
失重法高温高压腐蚀反应釜 | 建造成本低、操作简单、灵活性好、功能全面,可评价极端环境下材料性能,样品用量少,应用广泛 | 液体流动状态与实际管线差别大,无法直接研究不同流型下的CO2腐蚀行为 | 失重法平均腐蚀速率 | Liu等[ | 氯化物含量增加使碳钢腐蚀速率出现临界值 |
程远鹏等[ | CO2/油/水环境中钢材的腐蚀速率与含水率正相关 | ||||
孟凡娟等[ | 油水体系中3Cr钢相较于X65钢表现出更好的抗腐蚀性能 | ||||
张星等[ | 乳状液对腐蚀速率的影响与液滴粒径相关,存在临界尺寸 | ||||
Zeng等[ | 温度和CO2分压会显著影响套管的CO2腐蚀速率 | ||||
三电极电化学腐蚀装置 | 装置成本低、使用方便、操作简单、耦合性强、应用广泛,可用于研究腐蚀动力学特性,分析微观腐蚀机理 | 要求溶液导电性好,在含油体系中存在局限性,高压体系应用较少 | 极化曲线、电化学阻抗谱和腐蚀速率 | Porcayo等[ | 以咖啡油为基础的衍生物具有良好的缓蚀性能 |
Obot等[ | 湍流效果的增加削弱缓蚀剂性能 | ||||
贾巧燕[ | X65钢在油水分层介质的油相中几乎不被腐蚀 | ||||
Ma等[ | 静态条件下粗糙的表面减轻了CO2 腐蚀 | ||||
张志慧等[ | 材料中铬含量的升高增加了CO2腐蚀电流密度 | ||||
Li等[ | 气相中O2、SO2或NO2的存在加速X80钢的腐蚀 | ||||
Silva等[ | 油品黏度影响乳状液类型和CO2腐蚀速率 | ||||
腐蚀模拟环道 | 流动形态可最大程度模拟实际油水混输管道,用于探究流型、流速和乳状液形态对CO2腐蚀行为的影响,可分析特定位置腐蚀行为 | 装置建设和运行成本高,操作复杂,实验周期长,样品用量和占地面积大,温度和压力精密控制 困难 | 通过耦合的测试段、搭载的电化学系统或腐蚀探针计算腐蚀速率 | 刘晓田[ | 段塞频率的增大加剧管道腐蚀 |
Li等[ | 油水乳状液中腐蚀速率随含水率增加不断增大 | ||||
Silva等[ | 原油的性质可影响乳状液的流动形态 | ||||
Wang等[ | 通过油水交替输送降低CO2腐蚀风险 | ||||
Silva等[ | 5DP钢的CO2腐蚀质量损失低于X80钢,表现出更好的抗腐蚀能力 |
研究装置 | 装置优势 | 装置缺点 | 常用表征方式 | 典型研究 | 主要研究结论 |
---|---|---|---|---|---|
失重法高温高压腐蚀反应釜 | 建造成本低、操作简单、灵活性好、功能全面,可评价极端环境下材料性能,样品用量少,应用广泛 | 液体流动状态与实际管线差别大,无法直接研究不同流型下的CO2腐蚀行为 | 失重法平均腐蚀速率 | Liu等[ | 氯化物含量增加使碳钢腐蚀速率出现临界值 |
程远鹏等[ | CO2/油/水环境中钢材的腐蚀速率与含水率正相关 | ||||
孟凡娟等[ | 油水体系中3Cr钢相较于X65钢表现出更好的抗腐蚀性能 | ||||
张星等[ | 乳状液对腐蚀速率的影响与液滴粒径相关,存在临界尺寸 | ||||
Zeng等[ | 温度和CO2分压会显著影响套管的CO2腐蚀速率 | ||||
三电极电化学腐蚀装置 | 装置成本低、使用方便、操作简单、耦合性强、应用广泛,可用于研究腐蚀动力学特性,分析微观腐蚀机理 | 要求溶液导电性好,在含油体系中存在局限性,高压体系应用较少 | 极化曲线、电化学阻抗谱和腐蚀速率 | Porcayo等[ | 以咖啡油为基础的衍生物具有良好的缓蚀性能 |
Obot等[ | 湍流效果的增加削弱缓蚀剂性能 | ||||
贾巧燕[ | X65钢在油水分层介质的油相中几乎不被腐蚀 | ||||
Ma等[ | 静态条件下粗糙的表面减轻了CO2 腐蚀 | ||||
张志慧等[ | 材料中铬含量的升高增加了CO2腐蚀电流密度 | ||||
Li等[ | 气相中O2、SO2或NO2的存在加速X80钢的腐蚀 | ||||
Silva等[ | 油品黏度影响乳状液类型和CO2腐蚀速率 | ||||
腐蚀模拟环道 | 流动形态可最大程度模拟实际油水混输管道,用于探究流型、流速和乳状液形态对CO2腐蚀行为的影响,可分析特定位置腐蚀行为 | 装置建设和运行成本高,操作复杂,实验周期长,样品用量和占地面积大,温度和压力精密控制 困难 | 通过耦合的测试段、搭载的电化学系统或腐蚀探针计算腐蚀速率 | 刘晓田[ | 段塞频率的增大加剧管道腐蚀 |
Li等[ | 油水乳状液中腐蚀速率随含水率增加不断增大 | ||||
Silva等[ | 原油的性质可影响乳状液的流动形态 | ||||
Wang等[ | 通过油水交替输送降低CO2腐蚀风险 | ||||
Silva等[ | 5DP钢的CO2腐蚀质量损失低于X80钢,表现出更好的抗腐蚀能力 |
影响因素 | 研究者 | 年份 | 研究装置/方法 | 水相 | 变量范围 | 主要结论 |
---|---|---|---|---|---|---|
温度 | 魏爱军等[ | 2009 | 三电极体系 | 模拟采出水 | 40~80℃ | 钢材的腐蚀速率随温度上升而急剧升高 |
蔡乾锋等[ | 2016 | 腐蚀反应釜 | 现场采出水 | 30~55℃ | 钢材的腐蚀速率随温度上升而逐渐升高 | |
Li等[ | 2016 | 腐蚀模拟环道 | 模拟采出水 | 35~75℃ | 油水乳状液中腐蚀速率随温度增加而不断增大 | |
刘晓旭等[ | 2017 | 腐蚀反应釜 | 现场采出水 | 40~110℃ | 腐蚀速率随温度升高先增大后减小 | |
程远鹏等[ | 2018 | 腐蚀反应釜和三电极体系 | 模拟采出水 | 40~80℃ | 腐蚀速率随温度升高先增大后减小 | |
Zeng等[ | 2022 | 腐蚀反应釜 | 模拟采出水 | 30~150℃ | 腐蚀速率随温度升高先增大后减小 | |
CO2分压 | 蔡乾锋等[ | 2016 | 腐蚀反应釜 | 现场采出水 | 1~5MPa | 钢材试样的腐蚀速率随CO2分压的增加先减小后增大 |
白羽等[ | 2017 | 腐蚀反应釜 | 模拟采出水 | 0.5~2.5MPa | 腐蚀速率随CO2分压的增大变化幅度很小 | |
Silva等[ | 2019 | 腐蚀模拟环道 | 模拟采出水 | 0.5~2.0MPa | CO2分压的增加提高了腐蚀速率 | |
Zeng等[ | 2022 | 腐蚀反应釜 | 模拟采出水 | 5~20MPa | 钢材的腐蚀速率随压力上升而不断增加 | |
流速 | 李建平等[ | 2004/2005 | 腐蚀反应釜 | — | 0.1~2.0m/s | 流速增加对腐蚀速率具有双重作用 |
崔铭伟等[ | 2015 | OLGA模拟 | — | 20~170kg/s | 流量的增加提高腐蚀速率 | |
Li等[ | 2016 | 腐蚀模拟环道 | 模拟采出水 | 0.25~1.5m/s | 油水乳状液中CO2腐蚀速率随流速增加不断增大 | |
程振玉等[ | 2022 | CFD模拟 | — | 0.5~3.0m/s | 流速增加对腐蚀速率具有双重作用 |
影响因素 | 研究者 | 年份 | 研究装置/方法 | 水相 | 变量范围 | 主要结论 |
---|---|---|---|---|---|---|
温度 | 魏爱军等[ | 2009 | 三电极体系 | 模拟采出水 | 40~80℃ | 钢材的腐蚀速率随温度上升而急剧升高 |
蔡乾锋等[ | 2016 | 腐蚀反应釜 | 现场采出水 | 30~55℃ | 钢材的腐蚀速率随温度上升而逐渐升高 | |
Li等[ | 2016 | 腐蚀模拟环道 | 模拟采出水 | 35~75℃ | 油水乳状液中腐蚀速率随温度增加而不断增大 | |
刘晓旭等[ | 2017 | 腐蚀反应釜 | 现场采出水 | 40~110℃ | 腐蚀速率随温度升高先增大后减小 | |
程远鹏等[ | 2018 | 腐蚀反应釜和三电极体系 | 模拟采出水 | 40~80℃ | 腐蚀速率随温度升高先增大后减小 | |
Zeng等[ | 2022 | 腐蚀反应釜 | 模拟采出水 | 30~150℃ | 腐蚀速率随温度升高先增大后减小 | |
CO2分压 | 蔡乾锋等[ | 2016 | 腐蚀反应釜 | 现场采出水 | 1~5MPa | 钢材试样的腐蚀速率随CO2分压的增加先减小后增大 |
白羽等[ | 2017 | 腐蚀反应釜 | 模拟采出水 | 0.5~2.5MPa | 腐蚀速率随CO2分压的增大变化幅度很小 | |
Silva等[ | 2019 | 腐蚀模拟环道 | 模拟采出水 | 0.5~2.0MPa | CO2分压的增加提高了腐蚀速率 | |
Zeng等[ | 2022 | 腐蚀反应釜 | 模拟采出水 | 5~20MPa | 钢材的腐蚀速率随压力上升而不断增加 | |
流速 | 李建平等[ | 2004/2005 | 腐蚀反应釜 | — | 0.1~2.0m/s | 流速增加对腐蚀速率具有双重作用 |
崔铭伟等[ | 2015 | OLGA模拟 | — | 20~170kg/s | 流量的增加提高腐蚀速率 | |
Li等[ | 2016 | 腐蚀模拟环道 | 模拟采出水 | 0.25~1.5m/s | 油水乳状液中CO2腐蚀速率随流速增加不断增大 | |
程振玉等[ | 2022 | CFD模拟 | — | 0.5~3.0m/s | 流速增加对腐蚀速率具有双重作用 |
1 | 刘畅, 陈旭, 杨江. CO2腐蚀及其缓蚀剂应用研究进展[J]. 化工进展, 2021, 40(11): 6305-6314. |
LIU Chang, CHEN Xu, YANG Jiang. Corrosion inhibitors and its application in CO2 corrosion[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6305-6314. | |
2 | KAIRY S K, ZHOU S, TURNBULL A, et al. Corrosion of pipeline steel in dense phase CO2 containing impurities: A critical review of test methodologies[J]. Corrosion Science, 2023, 214: 110986. |
3 | 张卫风, 周武, 王秋华. 相变吸收捕集烟气中CO2技术的发展现状[J]. 化工进展, 2022, 41(4): 2090-2101. |
ZHANG Weifeng, ZHOU Wu, WANG Qiuhua. Recent developments of phase-change absorption technology for CO2 capture from flue gas[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2090-2101. | |
4 | SILVA C A, VARELA L B, KOLAWOLE F O, et al. Multiphase-flow-induced corrosion and cavitation-erosion damages of API 5L X80 and API 5DP grade S steels[J]. Wear, 2020, 452/453: 203282. |
5 | 贾巧燕, 王贝, 王赟, 等. 油水两相界面处缓蚀剂的作用效果及机理[J]. 工程科学学报, 2020, 42(2): 225-232. |
JIA Qiaoyan, WANG Bei, WANG Yun, et al. Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region[J]. Chinese Journal of Engineering, 2020, 42(2): 225-232. | |
6 | ZENG Dezhi, DONG Baojun, ZHANG Sisong, et al. Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109526. |
7 | SILVA Carlos A DA, David Filho, NUNES Gislaine Maria, et al. Corrosion in multiphase slug flow loop in deep-water oil and gas exploitation[C]//Offshore Technology Conference Brasil. Riode, Janeiro, Brasil, 2019. |
8 | CHEN Longjun, LIU Wei, DONG Baojun, et al. Dynamic mechanism of corrosion products formed on carbon steel in CO2 environment: Effect of silty sand[J]. Corrosion Science, 2023, 221: 111355. |
9 | LIU Qingyou, MAO Liangjie, ZHOU Shouwei. Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments[J]. Corrosion Science, 2014, 84: 165-171. |
10 | EFIRD K D, JASINSKI R J. Effect of the crude oil on corrosion of steel in crude oil/brine production[J]. Corrosion, 1989, 45(2): 165-171. |
11 | HERNANDEZ Sandra, VERA Jose, MENDEZ Conchita, et al. On the mechanism of corrosion inhibition by crude oils[J]. Corrosion, 2001, 11(3): 1030-1044. |
12 | HERNANDEZ Sandra, DUPIAT Simona, VERA Jose R, et al. A ststistical approach for analyzing the inhibiting effect of different types of crude oil in CO2 corrosion of carbon steel[C]//NACE Corrosion 2002,Denver, Colorado 2002. |
13 | 王健. 油水交替润湿环境中碳钢缓蚀机理研究[D]. 北京: 中国石油大学(北京), 2016. |
WANG Jian. Releasing mechanism of carbon steel in periodically oil-water intermittent wetting condition[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
14 | ALBERTO DA SILVA Carlos, FILHO David, PIMENTEL Tarcisio, et al. Analysis of crude oil effect for CO2 corrosion of carbon steel-A rotating cylinder electrode approach[J]. Geoenergy Science and Engineering, 2023, 229: 212085. |
15 | CRAIG Bruce. Predicting the conductivity of water-in-oil solutions as a means to estimate corrosiveness[J]. Corrosion Science, 1998, 54(3): 657-662. |
16 | 张昆. 混输管道内腐蚀及影响因素分析[J]. 油气田地面工程, 2008, 27(6): 32-33. |
ZHANG Kun. Analysis of internal corrosion and influencing factors in multiphase transport pipeline[J]. Oil-Gasfield Surface Engineering, 2008, 27(6): 32-33. | |
17 | DANA Mohammad Mahdi, JAVIDI Mehdi. Corrosion simulation via coupling computational fluid dynamics and NORSOK CO2 corrosion rate prediction model for an outlet header piping of an air-cooled heat exchanger[J]. Engineering Failure Analysis, 2021, 122: 105285. |
18 | ZHANG Q H, XU N. Developing two amino acid derivatives as high-efficient corrosion inhibitors for carbon steel in the CO2-containing environment[J]. Industrial Crops and Products, 2023, 201: 116883. |
19 | HU Haitao, CHENG Y Frank. Modeling by computational fluid dynamics simulation of pipeline corrosion in CO2-containing oil-water two phase flow[J]. Journal of Petroleum Science and Engineering, 2016, 146: 134-141. |
20 | FARHADIAN Abdolreza, ZHAO Yang, NAEIJI Parisa, et al. Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines[J]. Energy, 2023, 269: 126797. |
21 | LI Qiang, HU Haitao, CHENG Y Frank. Corrosion of pipelines in CO2-saturated oil-water emulsion flow studied by electrochemical measurements and computational fluid dynamics modeling[J]. Journal of Petroleum Science and Engineering, 2016, 147: 408-415. |
22 | MA Wenlong, WANG Hanxiang, BARKER Richard, et al. Corrosion behaviour of X65 carbon steel under the intermittent oil/water wetting: A synergic effect of flow velocity and alternate immersion period[J]. Corrosion Science, 2021, 187: 109507. |
23 | 程振玉, 王丹, 谢飞, 等. 油水两相流体系下的CO2腐蚀行为研究[J]. 辽宁石油化工大学学报, 2022, 42(1): 41-46. |
CHENG Zhenyu, WANG Dan, XIE Fei, et al. Study of CO2 corrosion behavior under oil-water two-phase flow system[J]. Journal of Liaoning Petroleum & Chemical University, 2022, 42(1): 41-46. | |
24 | QIN Min, LIAO Kexi, HE Guoxi, et al. Corrosion mechanism of X65 steel exposed to H2S/CO2 brine and H2S/CO2 vapor corrosion environments[J]. Journal of Natural Gas Science and Engineering, 2022, 106: 104774. |
25 | 程远鹏, 白羽, 郑度奎, 等. X65钢在CO2/油/水环境中的腐蚀特性试验[J]. 油气储运, 2019, 38(8): 863-869. |
CHENG Yuanpeng, BAI Yu, ZHENG Dukui, et al. Test on the corrosion behavior of X65 steel in the simulated CO2/oil/water environment[J]. Oil & Gas Storage and Transportation, 2019, 38(8): 863-869. | |
26 | YUE Xiaoqi, ZHANG Lei, MA Lei, et al. Influence of a small velocity variation on the evolution of the corrosion products and corrosion behaviour of super 13Cr SS in a geothermal CO2 containing environment[J]. Corrosion science, 2021, 178: 108983. |
27 | WANG Yun, WANG Bei, XING Xijin, et al. Effects of flow velocity on the corrosion behaviour of super 13Cr stainless steel in ultra-HTHP CO2-H2S coexistence environment[J]. Corrosion Science, 2022, 200: 110235. |
28 | LI Kaiyang, ZENG Yimin. Advancing the mechanistic understanding of corrosion in supercritical CO2 with H2O and O2 impurities[J]. Corrosion Science, 2023, 213: 110981. |
29 | 刘安庆. 超临界CO2-原油-水共存条件下碳钢腐蚀规律研究[D]. 北京: 中国石油大学(北京), 2016. |
LIU Anqing. Study on the corrosion of carbon steel in supercritical CO2, crude and water conditions[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
30 | LENG Jihui, CHENG Y Frank, LIAO Kexi, et al. Synergistic effect of O2-Cl- on localized corrosion failure of L245N pipeline in CO2-O2-Cl- environment[J]. Engineering failure analysis, 2022, 138: 106332. |
31 | LI Chen, XIANG Yong, WANG Rongteng, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment[J]. Corrosion Science, 2023, 211: 110899. |
32 | WANG Kai, WANG Ziming, SONG Guangling. Batch transportation of oil and water for reducing pipeline corrosion[J]. Journal of petroleum science and engineering, 2020, 195: 107583. |
33 | ZAFAR Muhammad Nauman, RIHAN Rihan, Luai AL-HADHRAMI. Evaluation of the corrosion resistance of SA-543 and X65 steels in emulsions containing H2S and CO2 using a novel emulsion flow loop[J]. Corrosion Science, 2015, 94: 275-287. |
34 | YUE Xiaoqi, REN Yongqiang, HUANG Luyao, et al. The role of Cl- in the formation of the corrosion products and localised corrosion of 15Cr martensite stainless steel under an CO2-containing extreme oilfield condition[J]. Corrosion Science, 2022, 194: 109935. |
35 | HU Xinming, NEVILLE Anne. CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions—A systematic approach[J]. Wear, 2009, 267(11): 2027-2032. |
36 | 孟凡娟, 王清, 李慧心, 等. 3Cr钢在油水两相层流工况下的腐蚀行为[J]. 工程科学学报, 2020, 42(8): 1029-1039. |
MENG Fanjuan, WANG Qing, LI Huixin, et al. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. | |
37 | 张星, 赵琳, 刘安庆, 等. 高温高压CO2驱采出液中N80碳钢局部腐蚀诱发机理[J]. 腐蚀与防护, 2021, 42(4): 36-42. |
ZHANG Xing, ZHAO Lin, LIU Anqing, et al. Initiation of localized corrosion on N80 carbon steel in high-pressure and high-temperature CO2 enhanced oil recovery production fluids[J]. Corrosion and Protection, 2021, 42(4): 36-42. | |
38 | PORCAYO-CALDERON J, DE LA ESCALERA L M Martínez, CANTO J, et al. Imidazoline derivatives based on coffee oil as CO2 corrosion inhibitor[J]. International Journal of Electrochemical Science, 2015, 10(4): 3160-3176. |
39 | OBOT Ime Bassey, ONYEACHU Ikenna B, UMOREN Saviour A. Alternative corrosion inhibitor formulation for carbon steel in CO2-saturated brine solution under high turbulent flow condition for use in oil and gas transportation pipelines[J]. Corrosion Science, 2019, 159: 108140. |
40 | MA Wenlong, WANG Hanxiang, WANG Yongxing, et al. Experimental and simulation studies of the effect of surface roughness on corrosion behaviour of X65 carbon steel under intermittent oil/water wetting[J]. Corrosion Science, 2022, 195: 109947. |
41 | 张志慧, 武会宾, 顾洋, 等. 低碳中铬钢在模拟CO2驱油环境中的电化学行为[J]. 腐蚀与防护, 2022, 43(9): 52-58. |
ZHANG Zhihui, WU Huibin, GU Yang, et al. Electrochemical behavior of low carbon medium chromium steel in simulated CO2 enhanced oil recovery environment[J]. Corrosion and Protection, 2022, 43(9): 52-58. | |
42 | 刘晓田. 含二氧化碳段塞流管道腐蚀实验研究[D]. 青岛: 中国石油大学(华东), 2014. |
LIU Xiaotian. Experimental study on pipeline corrosion of slug flow including carbon dioxide[D]. Qingdao: China University of Petroleum (East China), 2014. | |
43 | 魏爱军, 霍富永, 王茜, 等. CO2驱油地面集输管道的腐蚀电化学行为[J]. 腐蚀与防护, 2009, 30(6): 383-385. |
WEI Aijun, HUO Fuyong, WANG Qian, et al. Electrochemical behavior in corrosion of gathering and transfer pipelines for CO2 flooding[J]. Corrosion and Protection, 2009, 30(6): 383-385. | |
44 | 蔡乾锋, 朱世东, 李金灵, 等. 20钢在模拟CO2驱工况环境中的腐蚀行为[J]. 腐蚀与防护, 2016, 37(8): 653-656. |
CAI Qianfeng, ZHU Shidong, LI Jinling, et al. Corrosion behavior of 20 steel in simulated working environment of CO2 flooding[J]. Corrosion and Protection, 2016, 37(8): 653-656. | |
45 | 刘晓旭, 许晶晶, 王磊, 等. 二氧化碳驱注采井常用油套管钢的腐蚀行为[J]. 腐蚀与防护, 2017, 38(7): 529-532. |
LIU Xiaoxu, XU Jingjing, WANG Lei, et al. Corrosion behavior of well tube steels for CO2 flooding injection and production wells[J]. Corrosion and Protection, 2017, 38(7): 529-532. | |
46 | 程远鹏, 白羽, 李自力, 等. 集输管道CO2/油/水环境中X65钢的腐蚀特征[J]. 工程科学学报, 2018, 40(5): 594-604. |
CHENG Yuanpeng, BAI Yu, LI Zili, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline[J]. Chinese Journal of Engineering, 2018, 40(5): 594-604. | |
47 | 白羽, 李自力, 程远鹏. 集输管线钢在CO2/油/水多相流环境中的腐蚀行为[J]. 腐蚀与防护, 2017, 38(3): 204-207, 213. |
BAI Yu, LI Zili, CHENG Yuanpeng. Corrosion behavior of gathering pipeline steel in the CO2/oil/water corrosive environment[J]. Corrosion and Protection, 2017, 38(3): 204-207, 213. | |
48 | 李建平, 赵国仙, 郝士明, 等. 常用油管钢的CO2局部腐蚀速率[J]. 东北大学学报, 2004, 25(11): 1069-1071. |
LI Jianping, ZHAO Guoxian, HAO Shiming, et al. Local corrosion rate of conventional tubing steels[J]. Journal of Northeastern University, 2004, 25(11): 1069-1071. | |
49 | 李建平, 赵国仙, 郝士明. 几种因素对油套管钢CO2腐蚀行为影响[J]. 中国腐蚀与防护学报, 2005, 25(4): 241-244. |
LI Jianping, ZHAO Guoxian, HAO Shiming. Dynamic corrosion behaviors of N80, P105 and SM110 steel[J]. Journal of Chinese Society for Corrosion and Protection, 2005, 25(4): 241-244. | |
50 | 崔铭伟, 俞天军, 封子艳, 等. 含CO2油水混输管道内腐蚀仿真研究[J]. 油气储运, 2015, 34(9): 983-987. |
CUI Mingwei, YU Tianjun, FENG Ziyan, et al. Pipeline internal corrosion simulation for CO2-containing oil-water mixed transportation[J]. Oil & Gas Storage and Transportation, 2015, 34(9): 983-987. | |
51 | NIU Qingwei, LI Zili, CUI Gan, et al. effect of flow rate on the corrosion behavior of N80 steel in simulated oil field environment containing CO2 and HAc[J]. International Journal of Electrochemical Science, 2017, 12(11): 10279-10290. |
52 | MANSOORI H, YOUNG D, BROWN B, et al. Influence of calcium and magnesium ions on CO2 corrosion of carbon steel in oil and gas production systems-A review[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 287-296. |
53 | VIDEN K, DUGSTAD A. Effect of flow rate, pH, Fe2+ concentration and steel quality on the CO2 corrosion of carbon steels[C]//Corrosion, 1987. San Franciso, CA, USA, 1987. |
54 | HEDAYAT A, POSTLETHWAITE J, YANNACOPOULOS S. Conjoint action of CO2 corrosion and reciprocating sliding wear on plain carbon steel[J]. Corrosion, 1992, 48(11): 953. |
55 | 李辉, 于海, 刘晓庆, 等. CO2分压和矿化度对J55管材的腐蚀影响[J]. 腐蚀与防护, 2022, 43(10): 51-56, 62. |
LI Hui, YU Hai, LIU Xiaoqing, et al. Influences of CO2 partial pressure and salinity on corrosion of J55 steel tubing[J]. Corrosion and Protection, 2022, 43(10): 51-56, 62. | |
56 | NAVABZADEH ESMAEELY Saba, CHOI Yoon-Seok, YOUNG David, et al. Effect of calcium on the formation and protectiveness of iron carbonate layer in CO2 corrosion[J]. Corrosion, 2013, 69(9): 912-920. |
57 | ZHAO Guoxian, LI Jianping, HAO Shiming, et al. Effect of Ca2+ and Mg2+ on CO2 corrosion behavior of tube steel[J]. Journal of Iron and Steel Research International, 2005, 12(1): 38-42. |
58 | DING Chen, GAO Kewei, CHEN Changfeng. Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 661-666. |
59 | GAO Kewei, YU Fang, PANG Xiaolu, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates[J]. Corrosion Science, 2008, 50(10): 2796-2803. |
60 | YAN Wei, ZHU Peike, DENG Jingen. Corrosion behaviors of SMSS 13Cr and DSS 22Cr in H2S/CO2-oil-water environment[J]. International Journal of Electrochemical Science, 2016, 11(11): 9542-9558. |
61 | POTS B, KAPUSTA S, JOHN R, et al. Improvement on de Waard-Milliams corrosion prediction and application to corrosion management[C]// Corrosion 2002. Denver, Colorado, 2002. |
62 | SUN Jianbo, SUN Chong, ZHANG Guoan, et al. Effect of water cut on the localized corrosion behavior of P110 tubes-teel in supercritical CO2/oil/water environment[J]. Corrosion, 2016, 72(11): 1470-1482. |
63 | WEI Liangtian, PANG Xiaolu, GAO Kewei. Effects of crude oil on the corrosion behavior of pipeline steel under wet CO2 conditions[J]. Materials Performance, 2015, 54(5): 58-62. |
64 | 孙冲, 孙建波, 王勇, 等. 超临界CO2/油/水系统中油气管材钢的腐蚀机制[J]. 金属学报, 2014, 50(7): 811-820. |
SUN Chong, SUN Jianbo, WANG Yong, et al. Corrosion mechanism of OCTG carbon steel in supercritical CO2/oil/water system[J]. Acta Metallurgica Sinica, 2014, 50(7): 811-820. | |
65 | 周亮. CO2驱集输系统油水混合状态与腐蚀关系的研究[D]. 青岛: 中国石油大学(华东), 2014. |
ZHOU Liang. Study on the relationship between corrosion and oil-water mixed state in CO2 enhanced oil recovery gathering system[D]. Qingdao: China University of Petroleum (East China), 2014. | |
66 | ZHANG Y B, YAN K, CHE D F. Effect of Slug Flow on CO2 Corrosion[C]// The 6th International Symposium on Multiphase Flow Heat Mass Transfer and Energy Conversion. Xi’an, China, 2010. |
67 | 郑东宏, 车得福, 贺林, 等. 油气管道CO2腐蚀过程中弹状流的影响[J]. 腐蚀与防护, 2007, 28(2): 77-81. |
ZHENG Donghong, CHE Defu, HE Lin, et al. Effect of slug flow on CO2 corrosion of pipeline in oil and gas industry[J]. Corrosion and Protection, 2007, 28(2): 77-81. | |
68 | PALACIOS C A, SHADLEY J R. Characteristics of corrosion scales on steels in CO2 saterated NaCl brine[J]. Corrosion, 1991, 47(2): 122-127. |
69 | 李春福, 张颖, 王斌, 等. X56钢油气集输管道的CO2腐蚀电化学研究[J]. 天然气工业, 2004, 24(12): 145-148. |
LIU Chunfu, ZHANG Ying, WANG Bin, et al. Study on CO2 electrochemical corrosion for oil/gas gathering pipeline with X56 steel[J]. Natural Gas Industry, 2004, 24(12): 145-148. | |
70 | ZHANG Jian, WANG Zenglin, WANG Ziming, et al. Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2-enhanced oil recovery brines[J]. Corrosion Science, 2012, 65: 397-404. |
71 | RAMACHANDRAN S, CAMPBELL S, WARD M B. Interactions and properties of corrosion inhibitors with by-product layers[J]. Corrosion, 2001, 57(6): 508-515. |
72 | NORSOK Standard No1.M-506 CO2corrosion rate calculation model[S]. 2005. |
73 | JEPSON W P, STITZEL S, KANG C, et al. Model for sweet corrosion in horizontal multiphase slug flow[C]// Corrosion 97.New Orleans, Louisiana, 1997. |
74 | GARTLAND P O, SALOMONSEN J E. A pipeline integrity management strategy based on multiphase fluid flow and corrosion modeling[C]// Corrosion 99. San Antonio, Texas, 1999. |
75 | SMITH Liane, DE WAARD Kees, CRAIG Bruce D. The influence of crude oils on weil tubing corrosion rates[C]// Corrosion 2003. San Diego California, 2003. |
76 | SMITH L, BARTLETT P, CUNNINGHAM H. modeling corrosion rates in oil production tubing[C]//Eurocorr, 2001. |
77 | NESIC Srdjan. Key issues related to modeling of internal of corrosion of oil and gas pipelines—A review[J]. Corrosion Science, 2007, 49: 4308-4338. |
78 | NESIC Srdjan, WANG Shihuai, CAI Jiyong, et al. Integrated CO2 corrosion-multiphase flow model[C]//SPE International symposium on Oilfield. Corrosion Aberdeen United Kingdom, 2004. |
79 | 蒋宏业, 刘映雪, 何莎, 等. 集输管道CO2腐蚀预测机理模型研究[J]. 西南石油大学学报(自然科学版), 2023, 45(2): 178-188. |
JANG Hongye, LIU Yingxue, HE Sha, et al. A study on mechanistic prediction model of gathering pipelines in CO2 environment[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(2): 178-188. |
[1] | ZHANG Dongxu, LIU Cheng, SONG Lechun, HUANG Qiyu, WANG Wei. Nucleation process of gas hydrates in the emulsion system: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3007-3020. |
[2] | WU Jinxing, YANG Yukun, NI Shuo, LI Junchao. Experimental and numerical research on comprehensive characteristics of the sinusoidal tube [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2847-2853. |
[3] | PENG Zhigang, ZHANG Jian, ZOU Changjun, CHEN Dajun, ZHENG Yong. Research on CO2 corrosion resistance performance of one kind environmental response cement stone [J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1953-1959. |
[4] | XIANG Shuguang, WANG Jiye. Research progress in catalyst activity in Nd-catalyzed isoprene rubber [J]. Chemical Industry and Engineering Progree, 2015, 34(3): 720-723. |
[5] | REN Xiaoguang,XIE Yunfeng,XUAN Zhengnan. Inhibition efficiency of BTA compound corrosion inhibitor [J]. Chemical Industry and Engineering Progree, 2007, 26(4): 577-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |