Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 292-301.DOI: 10.16085/j.issn.1000-6613.2023-1463
• Column: Chemical process intensification • Previous Articles
YU Xiaoxiao1(), CHAO Yanhong1, LIU Haiyan1, ZHU Wenshuai2,3(), LIU Zhichang2
Received:
2023-08-21
Revised:
2023-11-01
Online:
2024-02-05
Published:
2024-01-20
Contact:
ZHU Wenshuai
于笑笑1(), 巢艳红1, 刘海燕1, 朱文帅2,3(), 刘植昌2
通讯作者:
朱文帅
作者简介:
于笑笑(1991—),女,博士,副教授,研究方向为CO2催化转化。E-mail:xiaoxiaoyu@cup.edu.cn。
基金资助:
CLC Number:
YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301.
于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1463
催化剂 | 波长/nm | 添加剂 | 产CO效率/ μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
40NU@FNBZ | >420 | H2O | 18.78 | [ |
TAPBB-COF | >200, 60℃ | H2O | 24.6 | [ |
CB-COP-mpd | >420 | H2O | 191.46 | [ |
P3HT/TiO2/RePc226 | >500 | H2O,16.7% TEOA(体积分数) | 138.9 | [ |
CoPor-DBBP | >400 | H2O∶MeCN∶TEA= 4∶1∶2 | 286.7 | [ |
AQ-TEA | >300 | H2O,16.7% TEOA(体积分数) | 392 | 本工作 |
催化剂 | 波长/nm | 添加剂 | 产CO效率/ μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
40NU@FNBZ | >420 | H2O | 18.78 | [ |
TAPBB-COF | >200, 60℃ | H2O | 24.6 | [ |
CB-COP-mpd | >420 | H2O | 191.46 | [ |
P3HT/TiO2/RePc226 | >500 | H2O,16.7% TEOA(体积分数) | 138.9 | [ |
CoPor-DBBP | >400 | H2O∶MeCN∶TEA= 4∶1∶2 | 286.7 | [ |
AQ-TEA | >300 | H2O,16.7% TEOA(体积分数) | 392 | 本工作 |
1 | LI Xin, YU Jiaguo, Jaroniec Mietek, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
2 | CHU Steven. Carbon capture and sequestration[J]. Science, 2009, 325(5948): 1599. |
3 | WANG Zhoujun, SONG Hui, LIU Huimin, et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects[J]. Angewandte Chemie International Edition, 2020, 59(21): 8016-8035. |
4 | WANG Changli, LV Zunhang, YANG Wenxiu, et al. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction[J]. Chemical Society Reviews, 2023,52(4): 1382-1427. |
5 | HU Canyu, CHEN Xing, Jingxiang LOW, et al. Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon[J]. Nature Communications, 2023, 14: 221. |
6 | ADACHI Taiki, KITAZUMI Yuki, SHIRAI Osamu, et al. Recent progress in applications of enzymatic bioelectrocatalysis[J]. Catalysts, 2020, 10(12): 1413. |
7 | GERARDO Grasso, DANIELA Zane, ROBERTO Dragone. Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications[J]. Nanomaterials, 2019, 10(1): 11. |
8 | YUAN Lan, QI Mingyu, TANG Zirong, et al. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(39): 21150-21172. |
9 | 霍景沛, 林冲, 陈桂煌. 光催化二氧化碳还原催化体系研究进展[J]. 化学推进剂与高分子材料, 2020, 18(3): 8-14. |
HUO Jingpei, LIN Chong, CHEN Guihuang. Research progress in photocatalytic reduction catalyst system of carbon dioxide[J]. Chemical Propellants & Polymeric Materials, 2020, 18(3): 8-14. | |
10 | GUO Zhenguo, CHEN Gui, COMETTO Claudio, et al. Selectivity control of CO versus HCOO-production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites[J]. Nature Catalysis, 2019, 2(9): 801-808. |
11 | TAKEDA Hiroyuki, COMETTO Claudio, ISHITANI Osamu, et al. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction[J]. ACS Catalysis, 2017, 7(1): 70-88. |
12 | PARASTAEV Alexander, MURAVEV Valery, OSTA Elisabet Huertas, et al. Breaking structure sensitivity in CO2 hydrogenation by tuning metal-oxide interfaces in supported cobalt nanoparticles[J]. Nature Catalysis, 2022, 5(11): 1051-1060. |
13 | WANG Ting, SUN Fuli, LIU Shoujie, et al. Dioxygen-enhanced CO2 photoreduction on TiO2 supported Cu single-atom sites[J]. Applied Catalysis B: Environmental, 2023, 325: 122339. |
14 | WU Dongxue, LIANG Qian, SI Honglin, et al. Self-assembly of a heterogeneous microreactor with carbon dots embedded in Ti-MOF derived ZnIn2S4/TiO2 microcapsules for efficient CO2 photoreduction[J]. Journal of Materials Chemistry A, 2022, 10(46): 24519-24528. |
15 | 王英杰, 董辰, 谢亚勃, 等. MOF基材料绿色催化CO2还原研究进展[J]. 北京工业大学学报, 2022, 48(3): 261-272, 305. |
WANG Yingjie, DONG Chen, XIE Yabo, et al. Research progress of CO2 reduction catalyzed by MOF-based materials[J]. Journal of Beijing University of Technology, 2022, 48(3): 261-272, 305. | |
16 | DAI Chunhui, LIU Bin. Conjugated polymers for visible-light-driven photocatalysis[J]. Energy & Environmental Science, 2020, 13(1): 24-52. |
17 | HUANG Kuan, ZHANG Jia Yin, LIU Fujian, et al. Synthesis of porous polymeric catalysts for the conversion of carbon dioxide[J]. ACS Catalysis, 2018, 8(10): 9079-9102. |
18 | SPRICK Reiner Sebastian, JIANG Jiaxing, BONILLO Baltasar, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution[J]. Journal of the American Chemical Society, 2015, 137(9): 3265-3270. |
19 | YANG Sizhuo, HU Wenhui, ZHANG Xin, et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction[J]. Journal of the American Chemical Society, 2018, 140(44): 14614-14618. |
20 | 刘雨菲, 张蜜, 路猛, 等. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359. |
LIU Yvfei, ZHANG Mi, LU Meng, et al. Covalent organic frameworks for photocatalytic CO2 reduction[J]. Progress in Chemistry, 2023, 35(3): 349-359. | |
21 | WANG Shengyao, Xiao HAI, DING Xing, et al. Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction[J]. Nature Communications, 2020, 11: 1149. |
22 | Surya DAS, HAZRA CHOWDHURY Ipsita, HAZRA CHOWDHURY Arpita, et al. Metal-free covalent organic framework for facile production of solar fuel via CO2 reduction[J]. Industrial & Engineering Chemistry Research, 2022, 61(46): 17044-17056. |
23 | LEENAERS Pieter J, MAUFORT Arthur J L A, WIENK Martijn M, et al. Impact of π-conjugated linkers on the effective exciton binding energy of diketopyrrolopyrrole-dithienopyrrole copolymers[J]. The Journal of Physical Chemistry C, 2020, 124(50): 27403-27412. |
24 | YU Xiaoxiao, TIAN Shuyao, ZHANG Fengtao, et al. Tailoring the exciton binding energy of 2D conjugated polymers for powering metal-free CO2 photoreduction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(49): 16182-16188. |
25 | LAN Zhian, ZHANG Guigang, CHEN Xiong, et al. Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions[J]. Angewandte Chemie (International Ed in English), 2019, 58(30): 10236-10240. |
26 | CUI Lin, YU Shilong, GAO Wenqiang, et al. Tetraphenylenthene-based conjugated microporous polymer for aggregation-induced electrochemiluminescence[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 7966-7973. |
27 | YU Fengtao, ZHU Zhiqiang, LI Chuangye, et al. A redox-active perylene-anthraquinone donor-acceptor conjugated microporous polymer with an unusual electron delocalization channel for photocatalytic reduction of uranium (Ⅵ) in strongly acidic solution[J]. Applied Catalysis B: Environmental, 2022, 314: 121467. |
28 | LUO Lianwei, MA Wenyan, DONG Peihua, et al. Synthetic control of electronic property and porosity in anthraquinone-based conjugated polymer cathodes for high-rate and long-cycle-life Na-organic batteries[J]. ACS Nano, 2022, 16(9): 14590-14599. |
29 | QIAN Yunyang, LI Dandan, HAN Yulan, et al. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(49): 20763-20771. |
30 | LI Xiaojiao, SUN Hong-Bin, SUN Xudong. Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries[J]. Polymer, 2021, 234: 124245. |
31 | KIM Wonbin, AHMAD Zubair, LEE Hong-Joon, et al. Electrochemical properties of anthraquinone-containing polymer nanocomposite by nano-level molecular ordering[J]. Polymer Chemistry, 2021, 12(42): 6154-6160. |
32 | RUIZ-MUELLE Ana Belén, Rafael CONTRERAS-CÁCERES, Pascual OÑA-BURGOS, et al. Polyacrylic acid polymer brushes as substrates for the incorporation of anthraquinone derivatives. Unprecedented application of decorated polymer brushes on organocatalysis[J]. Applied Surface Science, 2018, 428: 566-578. |
33 | GUO Shien, XIAO Yuting, JIANG Baojiang. Encapsulation of Pd nanoparticles in covalent triazine frameworks for enhanced photocatalytic CO2 conversion[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(37): 12646-12654. |
34 | Kyung-Lyul BAE, KIM Jinmo, Chan Kyu LIM, et al. Colloidal zinc oxide-copper(Ⅰ) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane[J]. Nature Communications, 2017, 8: 1156. |
35 | YU Xiaoxiao, GONG Ke, TIAN Shuyao, et al. A hydrophilic fully conjugated covalent organic framework for photocatalytic CO2 reduction to CO nearly 100% using pure water[J]. Journal of Materials Chemistry A, 2023, 11(11): 5627-5635. |
36 | GUO Liping, NIU Yingli, XU Haitao, et al. Engineering heteroatoms with atomic precision in donor-acceptor covalent triazine frameworks to boost photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2018, 6(40): 19775-19781. |
37 | WANG Congyong, ZHANG Zhicheng, ZHU Yating, et al. 2D covalent organic frameworks: From synthetic strategies to advanced optical-electrical-magnetic functionalities[J]. Advanced Materials, 2022, 34(17): e2102290. |
38 | ZHENG Bing, QI Feng, ZHANG Yu, et al. Over 14% efficiency single-junction organic solar cells enabled by reasonable conformation modulating in naphtho[2, 3-b: 6, 7-b']difuran based polymer[J]. Advanced Energy Materials, 2021, 11(13): 2003954. |
39 | BARMAN Soumitra, SINGH Ashish, RAHIMI Faruk Ahamed, et al. Metal-free catalysis: A redox-active donor-acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4 [J]. Journal of the American Chemical Society, 2021, 143(39): 16284-16292. |
40 | CHEN Bo, CHEN Wanru, WANG Miao, et al. Unravelling the multiple synergies in MOF/CMP supramolecular heterojunction for enhanced artificial photosynthesis[J]. Advanced Materials Interfaces, 2023, 10(6): 2201971. |
41 | WANG Lujie, WANG Ruilei, ZHANG Xiao, et al. Improved photoreduction of CO2 with water by tuning the valence band of covalent organic frameworks[J]. ChemSusChem, 2020, 13(11): 2973-2980. |
42 | YE Wenqiang, WANG Yuepeng, JI Guipeng, et al. Carbazolic conjugated organic polymers for visible-light-driven CO2Photoreduction with H2O to CO with high efficiency and selectivity[J]. ChemSusChem, 2022, 15(16): e202200759. |
43 | CHOE Min Su, CHOI Sunghan, LEE Hyun Seok, et al. Sustainable carbon dioxide reduction of the P3HT polymer-sensitized TiO2/Re(Ⅰ) photocatalyst[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50718-50730. |
44 | YU Zhen, XIAO Yuting, GUO Shien, et al. Visible light-driven selective reduction of CO2 by acetylene-bridged cobalt porphyrin conjugated polymers[J]. ChemSusChem, 2022, 15(12): e202200424. |
[1] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[2] | LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163. |
[3] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[4] | ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197. |
[5] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[6] | WANG Yiyan, WANG Darui, SHEN Zhenhao, HE Junlin, SUN Hongmin, YANG Weimin. Preparation and catalytic performance of fully crystalline MCM-22 zeolite catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 285-291. |
[7] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[8] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[9] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[10] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[11] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[12] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[13] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[14] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[15] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |