Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3802-3815.DOI: 10.16085/j.issn.1000-6613.2022-1671
• Resources and environmental engineering • Previous Articles Next Articles
LOU Baohui1,2,3(), WU Xianhao2,3, ZHANG Chi1,2,3, CHEN Zhen2,3, FENG Xiangdong2,3()
Received:
2022-09-08
Revised:
2022-11-21
Online:
2023-08-14
Published:
2023-07-15
Contact:
FENG Xiangdong
娄宝辉1,2,3(), 吴贤豪2,3, 张驰1,2,3, 陈臻2,3, 冯向东2,3()
通讯作者:
冯向东
作者简介:
娄宝辉(1992—),男,博士研究生,研究方向为能源高效清洁转化与低碳发展。E-mail:loubaohui@qq.com。
基金资助:
CLC Number:
LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815.
娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815.
纳米 颗粒 | 平均尺寸 /nm | 形貌 | 比表面积 /m2·g-1 | 密度 /kg·m-3 | 热导率 /W·m-1·K-1 |
---|---|---|---|---|---|
Fe3O4 | 4~5 | 球形 | 40~60 | 5200 | 17.65 |
SiO2 | 10~15 | 球形 | 180~270 | 2200 | — |
TiO2 | <50 | 球形 | 50±15 | 5500~6000 | — |
ZnO | 10~30 | 纳米棒 | 20~60 | 5606 | 29 |
NiO2 | 50 | — | — | 6670 | — |
Al2O3 | <40 | 球形 | — | 4700 | 36~40 |
MgO | — | 立方体 | — | 2900 | 48.4 |
纳米 颗粒 | 平均尺寸 /nm | 形貌 | 比表面积 /m2·g-1 | 密度 /kg·m-3 | 热导率 /W·m-1·K-1 |
---|---|---|---|---|---|
Fe3O4 | 4~5 | 球形 | 40~60 | 5200 | 17.65 |
SiO2 | 10~15 | 球形 | 180~270 | 2200 | — |
TiO2 | <50 | 球形 | 50±15 | 5500~6000 | — |
ZnO | 10~30 | 纳米棒 | 20~60 | 5606 | 29 |
NiO2 | 50 | — | — | 6670 | — |
Al2O3 | <40 | 球形 | — | 4700 | 36~40 |
MgO | — | 立方体 | — | 2900 | 48.4 |
研究人员 | 反应器 | 纳米颗粒类型 | 溶剂 | 增强/% | 负载 |
---|---|---|---|---|---|
Jiang等[ | 鼓泡反应器 | TiO2 | MEA | 0.7 | 0.06%(质量分数) |
Al2O3 | 0.02 | 0.06%(质量分数) | |||
Lu等[ | 搅拌式反应器 | CNT | 水 | 100 | 1.6kg/m3 |
Al2O3 | 5 | 1.6kg/m3 | |||
Pineda等[ | 设有托盘的吸收塔 | TiO2 | 甲醇 | 5 | 0.05%(体积分数) |
SiO2 | 6 | 0.05%(体积分数) | |||
A12O3 | 10 | 0.05%(体积分数) | |||
Zhang等[ | 搅拌式反应器 | TiO2 | 碳酸丙烯酯 | 60 | 1.0kg/m3 |
Golkhar等[ | 中空纤维膜气液反应器 | SiO2 | 水 | 20 | 0.5%(质量分数) |
CNT | 40 | 0.5%(质量分数) | |||
Haghtalab等[ | 准静态等温高压搅拌反应器 | SiO2 | 水 | 7 | 0.1%(质量分数) |
ZnO | 水 | 14 | 0.1%(质量分数) | ||
Nabipour等[ | 准静态高压反应器 | Fe3O4 | Sulfinol-M | 14.7 | 0.02%(质量分数) |
Kim等[ | 鼓泡吸收器 | SiO2 | 水 | 24 | 0.21%(质量分数) |
Pang等[ | 吸收柱 | Ag | 水/NH3混合物 | 55 | 0.02%(质量分数) |
Lee和Kang[ | 鼓泡反应器 | Al2O3 | NaCl溶液 | 12.5 | 0.01%(体积分数) |
Zhu等[ | 微型搅拌反应器 | MCM41(中孔SiO2) | 水 | 60 | 0.4%(质量分数) |
Lee等[ | 鼓泡反应器 | Al2O3 | 甲醇 | 5.6 | 0.01%(体积分数) |
Jung等[ | 鼓泡反应器 | Al2O3 | 甲醇 | 8 | 0.01%(体积分数) |
研究人员 | 反应器 | 纳米颗粒类型 | 溶剂 | 增强/% | 负载 |
---|---|---|---|---|---|
Jiang等[ | 鼓泡反应器 | TiO2 | MEA | 0.7 | 0.06%(质量分数) |
Al2O3 | 0.02 | 0.06%(质量分数) | |||
Lu等[ | 搅拌式反应器 | CNT | 水 | 100 | 1.6kg/m3 |
Al2O3 | 5 | 1.6kg/m3 | |||
Pineda等[ | 设有托盘的吸收塔 | TiO2 | 甲醇 | 5 | 0.05%(体积分数) |
SiO2 | 6 | 0.05%(体积分数) | |||
A12O3 | 10 | 0.05%(体积分数) | |||
Zhang等[ | 搅拌式反应器 | TiO2 | 碳酸丙烯酯 | 60 | 1.0kg/m3 |
Golkhar等[ | 中空纤维膜气液反应器 | SiO2 | 水 | 20 | 0.5%(质量分数) |
CNT | 40 | 0.5%(质量分数) | |||
Haghtalab等[ | 准静态等温高压搅拌反应器 | SiO2 | 水 | 7 | 0.1%(质量分数) |
ZnO | 水 | 14 | 0.1%(质量分数) | ||
Nabipour等[ | 准静态高压反应器 | Fe3O4 | Sulfinol-M | 14.7 | 0.02%(质量分数) |
Kim等[ | 鼓泡吸收器 | SiO2 | 水 | 24 | 0.21%(质量分数) |
Pang等[ | 吸收柱 | Ag | 水/NH3混合物 | 55 | 0.02%(质量分数) |
Lee和Kang[ | 鼓泡反应器 | Al2O3 | NaCl溶液 | 12.5 | 0.01%(体积分数) |
Zhu等[ | 微型搅拌反应器 | MCM41(中孔SiO2) | 水 | 60 | 0.4%(质量分数) |
Lee等[ | 鼓泡反应器 | Al2O3 | 甲醇 | 5.6 | 0.01%(体积分数) |
Jung等[ | 鼓泡反应器 | Al2O3 | 甲醇 | 8 | 0.01%(体积分数) |
5 | NARUKULLA R, CHATURVEDI K R, OJHA U, et al. Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications[J]. Energy, 2022, 241: 122929. |
6 | SIDDIG A, WANG Wenju, ATIF A. A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress[J]. Science of the Total Environment, 2021, 764: 142892. |
7 | MADEJSKI P, CHMIEL K, SUBRAMANIAN N, et al. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies[J]. Energies, 2022, 15(3): 887. |
8 | JANG S PIL, CHOI S U S. Effects of various parameters on nanofluid thermal conductivity[J]. Journal of Heat Transfer, 2007, 129(5): 617-623. |
9 | EASTMAN J A, CHOI U S, LI S, et al. Enhanced thermal conductivity through the development of nanofluids[J]. MRS Online Proceedings Library, 1996, 457(1): 3-11. |
10 | KRISHNAMURTHY S, BHATTACHARYA P, PHELAN P E, et al. Enhanced mass transport in nanofluids[J]. Nano Letters, 2006, 6(3): 419-423. |
11 | TAVAKOLI A, RAHIMI K, SAGHANDALI F, et al. Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review[J]. Journal of Environmental Management, 2022, 313: 114955. |
12 | LU Suming, XING Min, SUN Yan, et al. Experimental and theoretical studies of CO2 absorption enhancement by nano-Al2O3 and carbon nanotube particles[J]. Chinese Journal of Chemical Engineering, 2013, 21(9): 983-990. |
13 | HAJATZADEH P A, AGHAKHANI S, AFRAND M, et al. An updated review on application of nanofluids in heat exchangers for saving energy[J]. Energy Conversion and Management, 2019, 198: 111886. |
14 | ZARE P, KESHAVARZ P, MOWLA D. Membrane absorption coupling process for CO2 capture: Application of water-based ZnO, TiO2, and multi-walled carbon nanotube nanofluids[J]. Energy & Fuels, 2019, 33(2): 1392-1403. |
15 | DARVANJOOGHI M H K, ESFAHANY M N, ESMAEILI-FARAJ S H. Investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid[J]. Separation and Purification Technology, 2018, 195: 208-215. |
16 | KARIMI DARVANJOOGHI M H, PAHLEVANINEZHAD M, ABDOLLAHI A, et al. Investigation of the effect of magnetic field on mass transfer parameters of CO2 absorption using Fe3O4-water nanofluid[J]. AIChE Journal, 2017, 63(6): 2176-2186. |
17 | SALIMI J, HAGHSHENASFARD M, ETEMAD S G. CO2 absorption in nanofluids in a randomly packed column equipped with magnetic field[J]. Heat and Mass Transfer, 2015, 51(5): 621-629. |
18 | AGHEL B, SAHRAIE S, HEIDARYAN E, et al. Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor[J]. Process Safety and Environmental Protection, 2019, 131: 152-159. |
19 | LIN K-Y A, PARK A-H A. Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials[J]. Environmental Science & Technology, 2011, 45(15): 6633-6639. |
20 | BOURLINOS A B, CHOWDHURY S RAY, HERRERA R, et al. Functionalized nanostructures with liquid-like behavior: Expanding the gallery of available nanostructures[J]. Advanced Functional Materials, 2005, 15(8): 1285-1290. |
21 | RODRIGUEZ R, HERRERA R, BOURLINOS A B, et al. The synthesis and properties of nanoscale ionic materials[J]. Applied Organometallic Chemistry, 2010, 24(8): 581-589. |
22 | ZHANG Na, ZHANG Xiaoyang, PAN Zhen, et al. A brief review of enhanced co2 absorption by nanoparticles[J]. International Journal of Energy for a Clean Environment, 2018, 19(3/4): 201-215. |
23 | AKOH H, TSUKASAKI Y, YATSUYA S, et al. Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate[J]. Journal of Crystal Growth, 1978, 45: 495-500. |
24 | MA B, SHIN D, BANERJEE D. One-step synthesis of molten salt nanofluid for thermal energy storage application—A comprehensive analysis on thermophysical property, corrosion behavior, and economic benefit[J]. Journal of Energy Storage, 2021, 35: 102278. |
25 | ELSALAMONY R A, MORSI R E, ALSABAGH A M. Influence of gamma radiation on the improvement of stability, conductivity and photoactivity of titania nanofluid[J]. Journal of Nanofluids, 2015, 4(4): 442-448. |
26 | SARKAR J, GHOSH P, ADIL A. A review on hybrid nanofluids: Recent research, development and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 164-177. |
27 | ZHANG Zhien, CAI Jianchao, CHEN Feng, et al. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status[J]. Renewable Energy, 2018, 118: 527-535. |
28 | SOLANGI K H, KAZI S N, LUHUR M R, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids[J]. Energy, 2015, 89: 1065-1086. |
29 | MEHDIPOUR M, KESHAVARZ P, RAHIMPOUR M R. Rotating liquid sheet contactor: A new gas-liquid contactor system in CO2 absorption by nanofluids[J]. Chemical Engineering and Processing: Process Intensification, 2021, 165: 108447. |
30 | MA Binjian, BANERJEE D. A review of nanofluid synthesis[M]//Balasubramanian G, In Advances in Nanomaterials. Springer Cham, 2018: 135-176. |
31 | BOURLINOS A B, HERRERA R, CHALKIAS N, et al. Surface-functionalized nanoparticles with liquid-like behavior[J]. Advanced Materials, 2005, 17(2): 234-237. |
32 | RODRIGUEZ R, HERRERA R, ARCHER L A, et al. Nanoscale ionic materials[J]. Advanced Materials, 2008, 20(22): 4353-4358. |
33 | PETIT C, BHATNAGAR S, PARK A-H A. Effect of water on the physical properties and carbon dioxide capture capacities of liquid-like nanoparticle organic hybrid materials and their corresponding polymers[J]. Journal of Colloid and Interface Science, 2013, 407: 102-108. |
34 | LIN K-Y A, PARK Y, PETIT C, et al. Thermal stability, swelling behavior and CO2 absorption properties of Nanoscale Ionic Materials (NIMs)[J]. RSC Advances, 2014, 4(110): 65195-65204. |
35 | PARK Y, PETIT C, HAN P, et al. Effect of canopy structures and their steric interactions on CO2 sorption behavior of liquid-like nanoparticle organic hybrid materials[J]. RSC Advances, 2014, 4(17): 8723-8726. |
36 | LI Y, XIE H . Preparation of nanofluid by selecting nanoparticle from alumina, dioxide titanium, oxide zinc, nickel, and copper as additive, adding surfactant to base liquid, strongly stirring, and vibrating with ultrasonic wave to obtain nanofluid, CN 101735775-A [P/OL]. |
37 | BIRMINGHAM J G, ROOT D W. Apparatus for generating electrical energy, has nanoparticle clusters having nanoparticle work function between anode work function and cathode work function, US2015229013-A1 |
38 | CHA J H, KYOUNG W M, SONG K H, et al. Method for evaluating dispersion degree of nanoparticle dispersed in nanofluid utilized in vehicle, involves reflecting result determining coherence between nanoparticles for computing dispersion degree of nanofluid, KR1704280-B1 [P/OL]. |
39 | CHOI C, OH J M, YOO H S. Oil-based nanofluid preparing method, involves replacing liquid solvent with predetermined oil, and obtaining nanofluid by dispersing certain volume percentage of metal, non-metal or ceramic-based nano powder in oil, KR2008038625-A KR851649-B1 [P/OL]. |
40 | LI Y, LI X, LI R, et al. Preparation of MXene nanofluid for solar collector, involves mixing MXene with dispersant to obtain mixture, and dispersing mixture into base liquid using ultrasonic instrument, CN111928500-A [P/OL]. |
1 | Plc BP. Statistical review of world energy[R]. 2022. |
2 | KOSAKA F, YAMAGUCHI T, ANDO Y, et al. Thermal management of CO2 methanation with axial staging of active metal concentration in Ni-YSZ tubular catalysts[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4116-4125. |
3 | KWAWU C R, ANIAGYEI A. A review on the computational studies of the reaction mechanisms of CO2 conversion on pure and bimetals of late 3D metals[J]. Journal of Molecular Modeling, 2021, 27(7): 200. |
4 | LEE C T, TSAI C C, WU P J, et al. Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis[J]. Journal of CO2 Utilization, 2021, 53: 101722. |
41 | FRANCE D M, HEIFETZ A, ROUTBORT J, et al. Nanofluid, useful in a heat transfer application, comprises a base heat transfer fluid and many ceramic nanoparticles dispersed throughout the base heat transfer fluid at a particle concentration and size to form stable nanofluid: US2011001081-A1, US9340720-B2 [P]. |
42 | SAID Z, HACHICHA A A, ABEROUMAND S, et al. Recent advances on nanofluids for low to medium temperature solar collectors: Energy, exergy, economic analysis and environmental impact[J]. Progress in Energy and Combustion Science, 2021, 84: 100898. |
43 | HAN J, LIN Y, WANG Q, et al. Preparation of zinc oxide nanofluid comprises dissolving soluble zinc salt in alcohol-water mixed solvent, adding dispersant, heating to boil, adding alkali, boiling, and cooling to room temperature: CN102502781[P]. 2012-06-20. |
44 | CHAKRABORTY S, PANIGRAHI P K. Stability of nanofluid: A review[J]. Applied Thermal Engineering, 2020, 174: 115259. |
45 | WALKER D A, KOWALCZYK B, DE LA CRUZ M O, et al. Electrostatics at the nanoscale[J]. Nanoscale, 2011, 3(4): 1316-1344. |
46 | SOFIAH A G N, SAMYKANO M, SHAHABUDDIN S, et al. A comparative experimental study on the physical behavior of mono and hybrid RBD palm olein based nanofluids using CuO nanoparticles and PANI nanofibers[J]. International Communications in Heat and Mass Transfer, 2021, 120: 105006. |
47 | KONG Linghui, SUN Jianlin, BAO Yueyue. Preparation, characterization and tribological mechanism of nanofluids[J]. RSC Advances, 2017, 7(21): 12599-12609. |
48 | ETTEFAGHI E, GHOBADIAN B, RASHIDI A, et al. Preparation and investigation of the heat transfer properties of a novel nanofluid based on graphene quantum dots[J]. Energy Conversion and Management, 2017, 153: 215-223. |
49 | YANG Xuefei, LIU Zhenhua. Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2402-2412. |
50 | THAKUR P, SONAWANE S S, SONAWANE S H, et al. Nanofluids-based delivery system, encapsulation of nanoparticles for stability to make stable nanofluids[M]//Encapsulation of Active Molecules and Their Delivery System. Amsterdam: Elsevier, 2020: 141-152. |
51 | SOURAV B. DLS and zeta potential—What they are and what they are not?[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2016, 235: 337-351. |
52 | JUNG J-Y, YOO J Y. Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL)[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 525-528. |
53 | KAMALGHARIBI M, HORMOZI F, ZAMZAMIAN Seyed Amir Hossein, et al. Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: Influence of stirring, sonication and surface active agents[J]. Heat and Mass Transfer, 2016, 52(1): 55-62. |
54 | ZHU Haitao, ZHANG Canying, TANG Yaming, et al. Preparation and thermal conductivity of suspensions of graphite nanoparticles[J]. Carbon, 2007, 45(1): 226-228. |
55 | CHOUDHARY R, KHURANA D, KUMAR A, et al. Stability analysis of Al2O3/water nanofluids[J]. Journal of Experimental Nanoscience, 2017,12(1): 140-151. |
56 | MOHAMMAD M, EMAD S, SARA T L, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets[J]. Nanoscale Research Letters, 2014, 9(1): 15. |
57 | KHALED E, OLABI A G, TABBI W, et al. Environmental impacts of nanofluids: A review[J]. Science of the Total Environment, 2021, 763: 144202. |
58 | RUTHIYA K C, VAN DER SCHAAF J, KUSTER B F M, et al. Mechanisms of physical and reaction enhancement of mass transfer in a gas inducing stirred slurry reactor[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 55-69. |
59 | KRISHNAMURTHY S, BHATTACHARYA P, PHELAN P E, et al. Enhanced mass transport in nanofluids[J]. Nano Letters, 2006, 6(3): 419-423. |
60 | JIANG Jiazong, ZHAO Bo, ZHUO Yuqun, et al. Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles[J]. International Journal of Greenhouse Gas Control, 2014, 29: 135-141. |
61 | ZARENEZHAD B, MONTAZERI V. Nanofluid-assisted gas to hydrate (GTH) energy conversion for promoting CO2 recovery and sequestration processes in the petroleum industry[J]. Petroleum Science and Technology, 2016, 34(1): 37-43. |
62 | RASHIDI H, MAMIVAND S. Experimental and numerical mass transfer study of carbon dioxide absorption using Al2O3/water nanofluid in wetted wall column[J]. Energy, 2022, 238: 121670. |
63 | SELVI P, BASKAR R. CO2 absorption in nanofluid with magnetic field[J]. Chemical Industry and Chemical Engineering Quarterly, 2020, 26(4): 321-328. |
64 | JIANG Jiazong, ZHANG Song, FU Xuelong, et al. Review of gas-liquid mass transfer enhancement by nanoparticles from macro to microscopic[J]. Heat and Mass Transfer, 2019, 55(8): 2061-2072. |
65 | 叶航, 刘琦, 彭勃, 等. 纳米颗粒强化胺法吸收CO2研究进展[J]. 热力发电, 2021, 50(1): 74-81. |
YE Hang, LIU Qi, PENG Bo, et al. Review on CO2 absorption enhancement by nanoparticles in amine solutions[J]. Thermal Power Generation, 2021, 50(1): 74-81. | |
66 | RAHMATMAND B, KESHAVARZ P, AYATOLLAHI S. Study of absorption enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 nanoparticles in water and amine solutions[J]. Journal of Chemical & Engineering Data, 2016, 61(4): 1378-1387. |
67 | KOMATI S, SURESH A K. CO2 absorption into amine solutions: A novel strategy for intensification based on the addition of ferrofluids[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(8): 1094-1100. |
68 | KIM E S, JUNG J Y, KANG Y T. The effect of surface area on pool boiling heat transfer coefficient and CHF of Al2O3/water nanofluids[J]. Journal of Mechanical Science and Technology, 2013, 27(10): 3177-3182. |
69 | GANAPATHY H, SHOOSHTARI A, DESSIATOUN S, et al. Experimental investigation of enhanced absorption of carbon dioxide in diethanolamine in a microreactor[C]//Proceedings of ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels, June 16-19, 2013, Sapporo, Japan, 2013. |
70 | GARCIA M, KNUUTILA H K, ARONU U E, et al. Influence of substitution of water by organic solvents in amine solutions on absorption of CO2 [J]. International Journal of Greenhouse Gas Control, 2018, 78: 286-305. |
71 | PINEDA I T, CHOI C K, KANG Y T. CO2 gas absorption by CH3OH based nanofluids in an annular contactor at low rotational speeds[J]. International Journal of Greenhouse Gas Control, 2014, 23: 105-112. |
72 | ZHANG Yu, ZHAO Bo, JIANG Jiazong, et al. The use of TiO2 nanoparticles to enhance CO2 absorption[J]. International Journal of Greenhouse Gas Control, 2016, 50: 49-56. |
73 | GOLKHAR A, KESHAVARZ P, MOWLA D. Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors[J]. Journal of Membrane Science, 2013, 433: 17-24. |
74 | HAGHTALAB A, MOHAMMADI M, FAKHROUEIAN Z. Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids[J]. Fluid Phase Equilibria, 2015, 392: 33-42. |
75 | NABIPOUR M, KESHAVARZ P, RAEISSI S. Experimental investigation on CO2 absorption in Sulfinol-M based Fe3 O4 and MWCNT nanofluids[J]. International Journal of Refrigeration, 2017, 73: 1-10. |
76 | KIM W G, KANG H U, JUNG K M, et al. Synthesis of silica nanofluid and application to CO2 absorption[J]. Separation Science and Technology, 2008, 43(11/12): 3036-3055. |
77 | PANG Changwei, WU Weidong, SHENG Wei, et al. Mass transfer enhancement by binary nanofluids (NH3/H2O+Ag nanoparticles) for bubble absorption process[J]. International Journal of Refrigeration, 2012, 35(8): 2240-2247. |
78 | LEE J W, KANG Y T. CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution[J]. Energy, 2013, 53: 206-211. |
79 | IRANI V, TAUASOLI A, MALEKI A, et al. Polyethyleneimine-functionalized HKUST-1/MDEA nanofluid to enhance the absorption of CO2 in gas sweetening process[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5610-5619. |
80 | MANIKANDAN S P, AKILA S, DEEPAPRIYA N. Mass transfer performance of Al2O3 nanofluids for CO2 absorption in a wetted wall column[J]. International Research Journal of Engineering and Technology, 2019, 6(6): 1329-1331. |
81 | HWANG B J, PARK S W, PARK D W, et al. Absorption of carbon dioxide into aqueous colloidal silica solution with different sizes of silica particles containing monoethanolamine[J]. Korean Journal of Chemical Engineering, 2009, 26(3): 775-782. |
82 | PARK S W, CHOI B S, KIM S S, et al. Absorption of carbon dioxide into aqueous colloidal silica solution with diisopropanolamine[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 166-174. |
83 | PARK S W, CHOI B S, KIM S S, et al. Chemical absorption of carbon dioxide into aqueous colloidal silica solution containing monoethanolamine[J]. Journal of Industrial and Engineering Chemistry, 2007, 13: 133-142. |
84 | PARK S W, CHOI B S, LEE J W. Effect of elasticity of aqueous colloidal silica solution on chemical absorption of carbon dioxide with 2-amino-2-methyl-1-propanol[J]. Korea-Australia Rheology Journal, 2006, 18(3): 133-141. |
85 | LEE J W, PINEDA I T, LEE J H, et al. Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents[J]. Applied Energy, 2016, 178: 164-176. |
86 | SAID S, GOVINDARAJ V, HERRI J M, et al. A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: Application to the CO2 capture process[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 95-108. |
87 | NAGY E, FECZKO T, KOROKNAI B. Enhancement of oxygen mass transfer rate in the presence of nanosized particles[J]. Chemical Engineering Science, 2007, 62(24): 7391-7398. |
88 | ZHU Haiyang, SHANKS Brent H, HEINDEL Theodore J. Enhancing CO-water mass transfer by functionalized MCM41 nanoparticles[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7881-7887. |
89 | KIM J H, JUNG C W, KANG Y T. Mass transfer enhancement during CO2 absorption process in methanol/Al2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 76: 484-491. |
90 | KIM J K, PARK C W, KANG Y T. The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H2O/LiBr absorber[J]. International Journal of Refrigeration, 2003, 26(5): 575-585. |
91 | LEE J W, JUNG J Y, LEE S G, et al. CO2 bubble absorption enhancement in methanol-based nanofluids[J]. International Journal of Refrigeration, 2011, 34(8): 1727-1733. |
92 | JUNG Jung-Yewl, LEE Jae Won, KANG Yong Tab. CO2 absorption characteristics of nanoparticle suspensions in methanol[J]. Journal of Mechanical Science and Technology, 2012, 26: 2285-2290. |
93 | DALMOLIN I, SKOVROINSKI E, BIASI A, et al. Solubility of carbon dioxide in binary and ternary mixtures with ethanol and water[J]. Fluid Phase Equilibria, 2006, 245(2): 193-200. |
94 | SIQUEIRA CAMPOS C E P, H G D’A VILLARDI, PESSOA F L P, et al. Solubility of carbon dioxide in water and hexadecane: Experimental measurement and thermodynamic modeling[J]. Journal of Chemical & Engineering Data, 2009, 54(10): 2881-2886. |
95 | VALTZ A, CHAPOY A, COQUELET C, et al. Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modelling from 278.2 to 318.2K[J]. Fluid Phase Equilibria, 2004, 226: 333-344. |
96 | AGHEHROCHABOKI R, CHABOKI Y A, MALEKNIA S A, et al. Polyethyleneimine functionalized graphene oxide/methyldiethanolamine nanofluid: Preparation, characterization, and investigation of CO2 absorption[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103285. |
97 | CRAIG V S J. Bubble coalescence and specific-ion effects[J]. Current Opinion in Colloid & Interface Science, 2004, 9(1/2): 178-184. |
98 | KARS R L, BEST R J, DRINKENBURG A A H. The sorption of propane in slurries of active carbon in water[J]. The Chemical Engineering Journal, 1979, 17(3): 201-210. |
99 | VINKE H, HAMERSMA P J, FORTUIN J M H. Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles[J]. Chemical Engineering Science, 1993, 48(12): 2197-2210. |
100 | KLUYTMANS J H J, VAN WACHEM B G M, KUSTER B F M, et al. Mass transfer in sparged and stirred reactors: Influence of carbon particles and electrolyte[J]. Chemical Engineering Science, 2003, 58(20): 4719-4728. |
101 | HOLSTVOOGD R D, VANSWAAIJ W P M. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries[J]. Chemical Engineering Science, 1990, 45(1): 151-162. |
102 | KOO J, KLEINSTREUER C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids[J]. International Communications in Heat and Mass Transfer, 2005, 32(9): 1111-1118. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[8] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[9] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[10] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[11] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[12] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[13] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[14] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[15] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 797
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 353
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |