Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3643-3651.DOI: 10.16085/j.issn.1000-6613.2022-1579
• Materials science and technology • Previous Articles Next Articles
GUO Lixing1(), PANG Weiying1, MA Keyao1, YANG Jiahan1, SUN Zehui2, ZHANG Pan1, FU Dong1, ZHAO Kun1()
Received:
2022-08-26
Revised:
2022-11-23
Online:
2023-08-14
Published:
2023-07-15
Contact:
ZHAO Kun
郭立行1(), 庞蔚莹1, 马克遥1, 杨镓涵1, 孙泽辉2, 张盼1, 付东1, 赵昆1()
通讯作者:
赵昆
作者简介:
郭立行(1996—),男,硕士研究生,研究方向为光热CO2催化应用。E-mail:220192223083@ncepu.edu.cn。
基金资助:
CLC Number:
GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651.
郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1579
样品 | BET比表面积 /m2·g-1 | 孔体积① /cm3·g-1 | 孔径② /nm |
---|---|---|---|
GCs-PSs-TiO2 | 30.72 | 0.070 | 5.70 |
GCs-TiO2 | 42.19 | 0.077 | 4.93 |
PSs-TiO2 | 71.00 | 0.117 | 4.61 |
TiO2(无空间结构) | 73.44 | 0.39 | 19.68 |
样品 | BET比表面积 /m2·g-1 | 孔体积① /cm3·g-1 | 孔径② /nm |
---|---|---|---|
GCs-PSs-TiO2 | 30.72 | 0.070 | 5.70 |
GCs-TiO2 | 42.19 | 0.077 | 4.93 |
PSs-TiO2 | 71.00 | 0.117 | 4.61 |
TiO2(无空间结构) | 73.44 | 0.39 | 19.68 |
催化剂种类 | CO2光催化条件(所需催化剂质量,光源) | CO产率/μmo·g-1·h-1 | 参考文献 |
---|---|---|---|
PSs-TiO2 | 10mg,300W氙灯 | 11.04 | 本工作 |
GCs-TiO2 | 10mg,300W氙灯 | 9.14 | 本工作 |
GCs-PSs-TiO2 | 10mg,300W氙灯 | 9.1 | 本工作 |
CuGaS2/rGO-TiO2 | 200~300mg,300W氙灯 | 0.15 | [ |
m-CeO2/g-C3N4 | 50mg,300W氙灯 | 0.24 | [ |
TiO2-Graphene nanosheets | 10mg,300W氙灯 | 9.00 | [ |
g-C3N4/MXene | 50mg,300W氙灯(λ >420nm) | 3.98 | [ |
p-C3N4/InVO4 | 15mg,300W氙灯(λ >400nm) | 14.05 | [ |
Fe/TiO2 | 氙灯 | 8.2 | [ |
催化剂种类 | CO2光催化条件(所需催化剂质量,光源) | CO产率/μmo·g-1·h-1 | 参考文献 |
---|---|---|---|
PSs-TiO2 | 10mg,300W氙灯 | 11.04 | 本工作 |
GCs-TiO2 | 10mg,300W氙灯 | 9.14 | 本工作 |
GCs-PSs-TiO2 | 10mg,300W氙灯 | 9.1 | 本工作 |
CuGaS2/rGO-TiO2 | 200~300mg,300W氙灯 | 0.15 | [ |
m-CeO2/g-C3N4 | 50mg,300W氙灯 | 0.24 | [ |
TiO2-Graphene nanosheets | 10mg,300W氙灯 | 9.00 | [ |
g-C3N4/MXene | 50mg,300W氙灯(λ >420nm) | 3.98 | [ |
p-C3N4/InVO4 | 15mg,300W氙灯(λ >400nm) | 14.05 | [ |
Fe/TiO2 | 氙灯 | 8.2 | [ |
1 | DAS S, PÉREZ-RAMÍREZ J, GONG Jinlong, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J]. Chemical Society Reviews, 2020, 49(10): 2937-3004. |
2 | HURST T F, COCKERILL T T, FLORIN N H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage[J]. Energy & Environmental Science, 2012, 5(5): 7132-7150. |
3 | WEI Longfu, LIN Jinchi, XIE Shunji, et al. Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays[J]. Nanoscale, 2019, 11(26): 12530-12536. |
4 | XIA Tong, LONG Ran, GAO Chao, et al. Design of atomically dispersed catalytic sites for photocatalytic CO2 reduction[J]. Nanoscale, 2019, 11(23): 11064-11070. |
5 | SULTANA S, CHANDRA SAHOO P, MARTHA S, et al. A review of harvesting clean fuels from enzymatic CO2 reduction[J]. RSC Advances, 2016, 6(50): 44170-44194. |
6 | JADHAV S G, VAIDYA P D, BHANAGE B M, et al. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies[J]. Chemical Engineering Research and Design, 2014, 92(11): 2557-2567. |
7 | ASHLEY A, THOMPSON A, O'HARE D. Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH[J]. Angewandte Chemie, 2009, 48(52): 9839-9843. |
8 | LI Fengwang, MACFARLANE D R, ZHANG Jie. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction[J]. Nanoscale, 2018, 10(14): 6235-6260. |
9 | ZHANG Hongyi, ZHANG Yinjia, LI Yuyang, et al. Cu nanowire-catalyzed electrochemical reduction of CO or CO2 [J]. Nanoscale, 2019, 11(25): 12075-12079. |
10 | BAO Yipeng, WANG Jin, WANG Qi, et al. Immobilization of catalytic sites on quantum dots by ligand bridging for photocatalytic CO2 reduction[J]. Nanoscale, 2020, 12(4): 2507-2514. |
11 | LU Chang, ITANZE D S, ARAGON A G, et al. Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity[J]. Nanoscale, 2020, 12(5): 2987-2991. |
12 | FU Fangyu, SHOWN I, LI C S, et al. KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25186-25194. |
13 | ZHAO Yufei, WATERHOUSE G I N, CHEN Guangbo, et al. Two-dimensional-related catalytic materials for solar-driven conversion of CO x into valuable chemical feedstocks[J]. Chemical Society Reviews, 2019, 48(7): 1972-2010. |
14 | WU Shimiao, PANG Hong, ZHOU Wei, et al. Stabilizing CuGaS2 by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO2 reduction under visible light[J]. Nanoscale, 2020, 12(16): 8693-8700. |
15 | BILLO T, SHOWN I, ANBALAGAN A K, et al. A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity[J]. Nano Energy, 2020, 72: 104717. |
16 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
17 | GAWANDE M B, FORNASIER P, ZBORIL R. Carbon-based single-atom catalysts for advanced applications[J]. ACS Catalysis, 2020, 10(3): 2231-2259. |
18 | WANG Zhiyong, PU Yuan, WANG Dan, et al. Recent advances in metal-free carbon-based nanocatalysts[J]. Chinese Science Bulletin, 2018, 63(34): 3517-3529. |
19 | LIU Jian, QIAO Shizhang, BUDI H S, et al. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors[J]. Angewandte Chemie International Edition, 2010, 49(29): 4981-4985. |
20 | NASR M, EID C, HABCHI R, et al. Recent progress on titanium dioxide nanomaterials for photocatalytic applications[J]. ChemSusChem, 2018, 11(18): 3023-3047. |
21 | TAN Liangliang, CHAI Siangpiao, MOHAMED A R. Synthesis and applications of graphene-based TiO2 photocatalysts[J]. ChemSusChem, 2012, 5(10): 1868-1882. |
22 | LI Youji, CHEN Wei, LI Leiyong, et al. Photoactivity of titanium dioxide/carbon felt composites prepared with the assistance of supercritical carbon dioxide: Effects of calcination temperature and supercritical conditions[J]. Science China-Chemistry, 2011, 54(3): 497-505. |
23 | HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408. |
24 | RAN Lei, QIU Shi, ZHAI Panlong, et al. Conformal macroporous inverse opal oxynitride-based photoanode for robust photo-electrochemical water splitting[J]. Journal of the American Chemical Society, 2021, 143(19): 7402-7413. |
25 | WU Shiqun, TAN Xianjun, LEI Juying, et al. Ga-doped and Pt-loaded porous TiO2-SiO2 for photocatalytic nonoxidative coupling of methane[J]. Journal of the American Chemical Society, 2019, 141(16): 6592-6600. |
26 | ZHAO Heng, WU Min, LIU Jing, et al. Synergistic promotion of solar-driven H2 generation by three-dimensionally ordered macroporous structured TiO2-Au-CdS ternary photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 184: 182-190. |
27 | LIU Wenfang, WANG Aijun, TANG Junjie, et al. Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films[J]. Microporous and Mesoporous Materials, 2015, 204: 143-148. |
28 | ZHANG Qing, XIAO Wei, GUO Wanhui, et al. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self‐supporting electrode for effective overall water splitting[J]. Advanced Functional Materials, 2021, 31(33): 2102117. |
29 | SHEN Kui, ZHANG Lei, CHEN Xiaodong, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210. |
30 | LI Youji, LI Ming, XU Peng, et al. Efficient photocatalytic degradation of acid orange 7 over N-doped ordered mesoporous titania on carbon fibers under visible-light irradiation based on three synergistic effects[J]. Applied Catalysis A: General, 2016, 524: 163-172. |
31 | GUO Yunlong, WEN Meicheng, SONG Shengnan, et al. Enhanced catalytic elimination of typical VOCs over ZnCoO x catalyst derived from in situ pyrolysis of ZnCo bimetallic zeolitic imidazolate frameworks[J]. Applied Catalysis B: Environmental, 2022, 308: 121212. |
32 | AN Taicheng, LIU Jikai, LI Guiying, et al. Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2 [J]. Applied Catalysis A: General, 2008, 350(2): 237–243. |
33 | TAKAYAMA T, SATO K, FUJIMURA T, et al. Photocatalytic CO2 reduction using water as an electron donor by a powdered Z-scheme system consisting of metal sulfide and an RGO-TiO2 composite[J]. Faraday Discussion, 2017, 198: 397-407. |
34 | LI Mengli, ZHANG Lingxia, WU Meiying, et al. Mesostructured CeO2/g-C3N4 nanocomposites:remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations[J]. Nano Energy, 2016, 19: 145-155. |
35 | TU Wenguang, ZHOU Yong, LIU Qi, et al. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels[J]. Advanced Functional Materials, 2012, 22(6): 1215-1221. |
36 | LI Xing, BAI Yang, SHI Xian, et al. Mesoporous g-C3N4/MXene (Ti3C2T x ) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction[J]. Applied Surface Science, 2021, 546: 149111. |
37 | WANG Li, CHEN Deli, MIAO Shuqi, et al. Nitric acid-assisted growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets as an S-scheme photocatalyst with tunable oxygen vacancies for boosting CO2 conversion[J].Chemical Engineering Journal, 2022, 434: 133867. |
38 | NISHIiMURA A, ISHIDA N, TATEMATSU D, et al. Effect of Fe loading condition and reductants on CO2 reduction performance with Fe/TiO2 photocatalyst[J]. International Journal of Photoenergy, 2017, 2017: 1-11. |
39 | YANG Min, WANG Peng, LI Youji, et al. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 306: 121065. |
[1] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[2] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[3] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[4] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[5] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[6] | YANG Zhuang, LI Runhua, QIANG Zengshou, WANG Yajun, YAO Wenqing. Photocatalytic degradation of waste refrigerant R134a [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2109-2114. |
[7] | YAO Wen, ZHANG Yuchen, TENG Wenxin, LI Jiangling. Effect of surfactant on the preparation of Ca-doped β-In2S3 microstructure and its performance in photocatalytic degradation of methyl orange [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 774-782. |
[8] | CHENG Rong, DENG Ziqi, XIA Jincheng, LI Jiang, SHI Lei, ZHENG Xiang. Research progress on photocatalysis systems for inactivation of microbial aerosol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 957-968. |
[9] | DUO Jia, YAO Guodong, WANG Yingji, ZENG Xu, JIN Binbin. Effects on the photo-degradation of norfloxacin using modified Au-TiO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 624-630. |
[10] | SUN Hui, MENG Xianghai, WEI Jinghai, ZHOU Hongjun, XU Chunming. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. |
[11] | KOU Jiawei, CHENG Shuyan, CHENG Fangqin. Research advance of hydrotalcite-based catalysts in photocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 190-198. |
[12] | YANG Fu, LIU Mengting, MA Shulan, WEI Yixuan, OU Rui, WANG Xuyu, LI Lulu, ZHANG Wuxiang, PAN Jianming. Advanced in catalytic elimination of volatile organic compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4801-4812. |
[13] | XUE Lijing, FEI Xing, LIU Jianglin, WU Linjun, QIU Zhongjie, XU Quanzhou, ZHONG Xiaowen, LIN Xuliang, QIN Yanlin. Research progress on the preparation and application of lignin-based carbon catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2441-2450. |
[14] | MA Haofei, YUAN Peng, SHEN Boxiong. Research progress of preparation and utilization of perovskite-type photocatalyst in romoval of typical gaseous pollutants [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 721-729. |
[15] | ZHOU Jie, SUN Yue, BAO Yan, LIU Zejue, ZHANG Shasha, ZHU Beibei, WANG Lu, GUAN Guofeng. Research progress on modification strategy of graphite carbon nitride based on dimensional regulation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6430-6442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |