Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3634-3642.DOI: 10.16085/j.issn.1000-6613.2022-1552
• Materials science and technology • Previous Articles Next Articles
WANG Zhicai(), LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu
Received:
2022-08-22
Revised:
2022-09-27
Online:
2023-08-14
Published:
2023-07-15
Contact:
WANG Zhicai
王知彩(), 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福
通讯作者:
王知彩
作者简介:
王知彩(1968—),男,博士,教授,博士生导师,研究方向为煤清洁转化与高值化利用。E-mail:zhicaiw@ahut.edu.cn。
基金资助:
CLC Number:
WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642.
王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1552
原料 | C | H | O① | N | S | H/C | O/C |
---|---|---|---|---|---|---|---|
OHA | 58.46 | 2.49 | 36.13 | 2.37 | 0.55 | 0.51 | 0.46 |
NHA | 52.61 | 2.54 | 41.82 | 1.46 | 1.57 | 0.58 | 0.60 |
原料 | C | H | O① | N | S | H/C | O/C |
---|---|---|---|---|---|---|---|
OHA | 58.46 | 2.49 | 36.13 | 2.37 | 0.55 | 0.51 | 0.46 |
NHA | 52.61 | 2.54 | 41.82 | 1.46 | 1.57 | 0.58 | 0.60 |
SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 | K2O | Na2O | TiO2 | P2O5 | LOSS |
---|---|---|---|---|---|---|---|---|---|---|
26.01 | 10.81 | 49.81 | 3.70 | 3.64 | 2.87 | 1.07 | 0.69 | 0.68 | 0.25 | 0.47 |
SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 | K2O | Na2O | TiO2 | P2O5 | LOSS |
---|---|---|---|---|---|---|---|---|---|---|
26.01 | 10.81 | 49.81 | 3.70 | 3.64 | 2.87 | 1.07 | 0.69 | 0.68 | 0.25 | 0.47 |
样品 | 数均分子量(Mn) /g·mol-1 | 重均分子量(Mw) /g·mol-1 | 分散系数(PDI) |
---|---|---|---|
OHA | 725 | 985 | 1.35 |
OgA | 720 | 1430 | 1.99 |
AcA′ | 32507(1143) | 105938(1518) | 3.26(1.33) |
OgAcA′ | 43350(1228) | 95335(1528) | 2.20(1.24) |
样品 | 数均分子量(Mn) /g·mol-1 | 重均分子量(Mw) /g·mol-1 | 分散系数(PDI) |
---|---|---|---|
OHA | 725 | 985 | 1.35 |
OgA | 720 | 1430 | 1.99 |
AcA′ | 32507(1143) | 105938(1518) | 3.26(1.33) |
OgAcA′ | 43350(1228) | 95335(1528) | 2.20(1.24) |
1 | 张传祥, 张效铭, 程敢. 褐煤腐植酸提取技术及应用研究进展[J]. 洁净煤技术, 2018, 24(1): 6-12. |
ZHANG Chuanxiang, ZHANG Xiaoming, CHENG Gan. Research progress on extraction technology and application of lignite humic acid[J]. Clean Coal Technology, 2018, 24(1): 6-12. | |
2 | 程亮, 侯翠红, 徐丽, 等. 纳米腐殖酸动态吸附废水中镉离子及其洗脱特性[J]. 化工学报, 2016, 67(4): 1348-1356. |
CHENG Liang, HOU Cuihong, XU Li, et al. Dynamic adsorption and de-sorption characteristics of wastewater containing cadmium ion on nanoscale humic acid[J]. CIESC Journal, 2016, 67(4): 1348-1356. | |
3 | 隋明炜, 沈一丁, 赖小娟, 等. 腐植酸系水煤浆分散剂的合成表征及应用[J]. 煤炭科学技术, 2017, 45(10): 209-212. |
SUI Mingwei, SHEN Yiding, LAI Xiaojuan, et al. Synthesis characters and application of humic acid base dispersant applied to coal water mixture[J]. Coal Science and Technology, 2017, 45(10): 209-212. | |
4 | 司东永, 黄光许, 张传祥, 等. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 材料导报, 2018, 32(3): 368-372. |
SI Dongyong, HUANG Guangxu, ZHANG Chuanxiang, et al. Preparation and electrochemical performance of humic acid-based graphitized materials[J]. Materials Review, 2018, 32(3): 368-372. | |
5 | 郭雅妮, 李金成, 惠璠, 等. 超声辅助法制备风化煤腐植酸-丙烯酸吸水树脂[J]. 功能材料, 2020, 51(4): 4164-4169. |
GUO Yani, LI Jincheng, HUI Fan, et al. Preparation of humic acid-acrylic acid absorbent resin from weathered coal by ultrasonic-assisted method[J]. Journal of Functional Materials, 2020, 51(4): 4164-4169. | |
6 | FRANKE N W, KIEBLER M W, RUOF C H, et al. Water-soluble polycarboxylic acids by oxidation of coal[J]. Industrial & Engineering Chemistry, 1952, 44(11): 2784-2792. |
7 | WANG Wenhua, HOU Yucui, WU Weize, et al. Simultaneous production of small-molecule fatty acids and benzene polycarboxylic acids from lignite by alkali-oxygen oxidation[J]. Fuel Processing Technology, 2013, 112: 7-11. |
8 | LIU Fangjing, WEI Xianyong, ZHU Ying, et al. Oxidation of Shengli lignite with aqueous sodium hypochlorite promoted by pretreatment with aqueous hydrogen peroxide[J]. Fuel, 2013, 111: 211-215. |
9 | DOSKOČIL L, GRASSET L, VÁLKOVÁ D, et al. Hydrogen peroxide oxidation of humic acids and lignite[J]. Fuel, 2014, 134: 406-413. |
10 | GONG Lijiao, HOU Yucui, WU Weize, et al. Catalytic O2 oxidation of lignite to carboxylic acids with iron-based catalysts in acidic aqueous solutions[J]. Fuel Processing Technology, 2019, 191: 54-59. |
11 | MIURA K, MAE K, OKUTSU H, et al. New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals[J]. Energy & Fuels, 1996, 10(6): 1196-1201. |
12 | WANG Zhicai, WU Tao, WU Zequan, et al. A low carbon footprint method for converting low-rank coals to oxygen-containing chemicals[J]. Fuel, 2022, 315: 123277. |
13 | WANG Z C, WU Z Q, WANG Q, et al. Efficient oxidative depolymerization of Xilinguole lignite to produce humic acids with little CO2 production[J]. Solid Fuel Chemistry, 2021, 55(5): 348-356. |
14 | WU Zequan, WANG Zhicai, WU Tao, et al. Boosting conversion efficiency of lignite to oxygen-containing chemicals by thermal extraction and subsequent oxidative depolymerization[J]. Fuel, 2022, 308: 122043. |
15 | 莫祥银, 景颖杰, 邓敏, 等. 聚羧酸盐系高性能减水剂研究进展及评述[J]. 混凝土, 2009(3): 60-63. |
MO Xiangyin, JING Yingjie, DENG Min, et al. New research progress and summarization of polycarboxylate-type high performance superplasticizer[J]. Concrete, 2009(3): 60-63. | |
16 | 马正先, 宋沛霖, 周在波, 等. 新型高保坍降黏型聚羧酸减水剂制备及性能评价[J]. 硅酸盐通报, 2018, 37(11): 3386-3391. |
MA Zhengxian, SONG Peilin, ZHOU Zaibo, et al. Preparation and performance evaluation of new high slump reducing viscosity polycarboxylate superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3386-3391. | |
17 | 高瑞军, 吕生华. 聚羧酸系减水剂的构性关系及其作用机理研究[J]. 材料导报, 2012, 26(3): 57-60. |
GAO Ruijun, Shenghua LYU. Study on the structure and performances and acting mechanisms of polycarboaylate-type superplasticizers[J]. Materials Review, 2012, 26(3): 57-60. | |
18 | LEI Lei, PALACIOS M, PLANK J, et al. Interaction between polycarboxylate superplasticizers and non-calcined clays and calcined clays: A review[J]. Cement and Concrete Research, 2022, 154: 106717. |
19 | LIN Xiuju, PANG Hao, WEI Daidong, et al. Effect of superplasticizers with different anchor groups on the properties of cementitious systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127207. |
20 | ZHANG Tailong, GAO Jianming, DENG Xuan, et al. Graft copolymerization of black liquor and sulfonated acetone formaldehyde and research on concrete performance[J]. Construction and Building Materials, 2015, 83: 308-313. |
21 | CRÉPY L, PETIT J Y, WIRQUIN E, et al. Synthesis and evaluation of starch-based polymers as potential dispersants in cement pastes and self leveling compounds[J]. Cement and Concrete Composites, 2014, 45: 29-38. |
22 | 陈宝璠. 水溶液中共聚合成MPEGAA-AA-AMPS聚羧酸高效减水剂及其性能[J]. 化工进展, 2013, 32(4): 898-904. |
CHEN Baofan. Synthesis and performance of superplasticizer of MPEGAA-AA-AMPS by free radical copolymerization in aqueous solution[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 898-904. | |
23 | 李悦, 赵冰垠, 黄舟, 等. 抗泥型聚羧酸减水剂的研究进展[J]. 混凝土, 2020(11): 48-51. |
LI Yue, ZHAO Bingyin, HUANG Zhou, et al. Research status of anti-mud polycarboxylate superplasticizer[J]. Concrete, 2020(11): 48-51. | |
24 | 朱红姣, 张光华, 何志琴, 等. 抗泥型聚羧酸减水剂的制备及性能[J]. 化工进展, 2016, 35(9): 2920-2925. |
ZHU Hongjiao, ZHANG Guanghua, HE Zhiqin, et al. Preparation and properties of polycarboxylic superplasticizer with high tolerance to clay[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2920-2925. | |
25 | 李艳红, 庄锐, 张政, 等. 褐煤腐植酸的结构、组成及性质的研究进展[J]. 化工进展, 2015, 34(8): 3147-3157. |
LI Yanhong, ZHUANG Rui, ZHANG Zheng, et al. Research on the structure, chemical composition and characterization of humic acid from lignite[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3147-3157. | |
26 | BEDDAA H, FRAJ A B, LAVERGNE F, et al. Effect of potassium humate as humic substances from river sediments on the rheology, the hydration and the strength development of a cement paste[J]. Cement and Concrete Composites, 2019, 104: 103400. |
27 | OZUZUN S, UZAL B. Performance of leonardite humic acid as a novel superplasticizer in Portland cement systems[J]. Journal of Building Engineering, 2021, 42: 103070. |
28 | ILG M, PLANK J. A novel kind of concrete superplasticizer based on lignite graft copolymers[J]. Cement and Concrete Research, 2016, 79: 123-130. |
29 | 张光华, 刘龙, 李俊国, 等. 磺化腐植酸接枝改性共聚物合成及性能研究[J]. 煤炭转化, 2013, 36(2): 92-96. |
ZHANG Guanghua, LIU Long, LI Junguo, et al. Synthesis and properties research of sulfonated humic acid grafted copolymer[J]. Coal Conversion, 2013, 36(2): 92-96. | |
30 | CHANG Xiaofeng, SUN Jinsheng, XU Zhe, et al. Synthesis of a novel environment-friendly filtration reducer and its application in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 284-293. |
31 | WATANABE K, NISHIDA I, IMAI H. Dispersion of hydroxyapatite nanocrystals stabilized by polymeric molecules bearing carboxy and sulfo groups[J]. Colloid and Polymer Science, 2017, 295(9): 1491-1498. |
32 | 王秀梅, 杨勇, 舒鑫, 等. 聚羧酸减水剂在水泥颗粒表面的吸附行为研究[J]. 新型建筑材料, 2017, 44(11): 13-16. |
WANG Xiumei, YANG Yong, SHU Xin, et al. Adsorption behavior of polycarboxylate superplascticizer on cement particle surfaces[J]. New Building Materials, 2017, 44(11): 13-16. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[5] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[8] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[9] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[10] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[11] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[12] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |