Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5286-5298.DOI: 10.16085/j.issn.1000-6613.2022-2038
• Materials science and technology • Previous Articles Next Articles
GUAN Yongxin1,2(), ZHOU Qiang1,3, CHEN Liyi2, LI Hui2, LIU Xiaonan1,3()
Received:
2022-11-20
Revised:
2022-12-18
Online:
2023-11-11
Published:
2023-10-15
Contact:
LIU Xiaonan
关永昕1,2(), 周强1,3, 陈立义2, 李慧2, 刘小楠1,3()
通讯作者:
刘小楠
作者简介:
关永昕(1995—),男,硕士研究生,研究方向为含氟涂料。E-mail:dawnluke@163.com。
基金资助:
CLC Number:
GUAN Yongxin, ZHOU Qiang, CHEN Liyi, LI Hui, LIU Xiaonan. Research progress of organic silicon and organic fluorine low surface energy antifouling coatings[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5286-5298.
关永昕, 周强, 陈立义, 李慧, 刘小楠. 有机硅、有机氟低表面能防污涂料研究进展[J]. 化工进展, 2023, 42(10): 5286-5298.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2038
涂料类别 | 机理 | 优点 | 缺点 |
---|---|---|---|
化学防污涂料 | 添加对海洋污损生物有抑制作用的添加剂 | 直接作用于污损生物附着阶段 | 对海洋环境有明显的副作用 |
物理防污涂料 | 降低船体表面能,使海洋污损生物难以附着 | 环境友好,不使用化学助剂就能产生防污效果 | 静态防污效果不佳,涂料机械性能不佳 |
生物防污涂料 | 添加天然产物抑制海洋污损生物或利用仿生学原理降低表面能 | 兼具化学防污和物理防污的优点 | 提取工序复杂、成本高,防污性能有限 |
涂料类别 | 机理 | 优点 | 缺点 |
---|---|---|---|
化学防污涂料 | 添加对海洋污损生物有抑制作用的添加剂 | 直接作用于污损生物附着阶段 | 对海洋环境有明显的副作用 |
物理防污涂料 | 降低船体表面能,使海洋污损生物难以附着 | 环境友好,不使用化学助剂就能产生防污效果 | 静态防污效果不佳,涂料机械性能不佳 |
生物防污涂料 | 添加天然产物抑制海洋污损生物或利用仿生学原理降低表面能 | 兼具化学防污和物理防污的优点 | 提取工序复杂、成本高,防污性能有限 |
1 | 温小青. 2022年全球油轮运输市场半年回顾及展望[J]. 世界海运, 2022, 45(9): 11-18. |
WEN Xiaoqing. Semi annual review and prospect of global tanker transport market in 2022 [J]. World Shipping, 2022, 45(9): 11-18. | |
2 | 刘登良. 涂料工艺[M]. 4版. 北京: 化学工业出版社, 2010. |
LIU Dengliang. Coatings technology[M]. 4th ed. Beijing: Chemical Industry Press, 2010. | |
3 | 刘泽曦. 2021年全球涂料行业发展及展望[J]. 中国涂料, 2022, 37(5): 1-14. |
LIU Zexi. 2021 Global coating industry development and outlook[J]. China Coatings, 2022, 37(5): 1-14. | |
4 | LIU Mengyue, LI Shaonan, WANG Hao, et al. Research progress of environmentally friendly marine antifouling coatings[J]. Polymer Chemistry, 2021, 12(26): 3702-3720. |
5 | ALZIEU C L, SANJUAN J, DELTREIL P J, et al. Tin contamination in Arcachon Bay: Effects on oyster shell anomalies[J]. Marine Pollution Bulletin, 1986, 17(11): 494-498. |
6 | TAKAHASHI Kazunobu. Release rate of biocides from antifouling paints[M]// Ecotoxicology of Antifouling Biocides. Tokyo: Springer, 2009: 3-22. |
7 | KONSTANTINOU I K, ALBANIS T A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review[J]. Environment International, 2004, 30(2): 235-248. |
8 | BLANCK Hans, ERIKSSON K M, GROENVALL F, et al. A retrospective analysis of contamination and periphyton PICT patterns for the antifoulant irgarol 1051, around a small marina on the Swedish west coast[J]. Marine Pollution Bulletin, 2009, 58(2): 230-237. |
9 | 张凯, 桂泰江, 吴连锋, 等. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(S2): 550-553. |
ZHANG Kai, GUI Taijiang, WU Lianfeng, et al. Research and development of biomimetic antifouling strategies[J]. Materials Reports, 2021, 35(S2): 550-553. | |
10 | 陈国安, 陈珊珊, 庄焱. 环境友好型船舶涂料研究进展[J]. 中国涂料, 2020, 35(11): 7-10. |
CHEN Guoan, CHEN Shanshan, ZHUANG Yan. Progress in research on environmentally friendly ship coatings[J]. China Coatings, 2020, 35(11): 7-10. | |
11 | CHAMBERS L D. Modern approaches to marine antifouling coatings[J]. Surface and Coatings Technology, 2006, 201(6): 3642-3652. |
12 | JIN Huichao, WANG Jianfu, TIAN Limei et al. Recent advances in emerging integrated antifouling and anticorrosion coatings[J]. Materials & Design, 2022, 213: 110307. |
13 | BAIER R E, Surface behaviour of biomaterials: The theta surface for biocompatibility[J]. Journal of Materials Science: Materials in Medicine, 2006, 17(11): 1057-1062. |
14 | BAIER R E, DEPALMA V A. The relation of the internal surface of grafts to thrombosis[J]. Management of Arterial Occlusive Disease, 1971, 18: 1-47. |
15 | LEJARS Marlène, MARGAILLAN André, BRESSY Christine. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings[J]. Chemical Reviews, 2012, 112(8): 4347-4390. |
16 | MAGIN Chelsea M, COOPER Scott P, BRENNAN Anthony B. Non-toxic antifouling strategies[J]. Materials Today, 2010, 13(4): 36-44. |
17 | BRADY Robert F, SINGER Irwin L. Mechanical factors favoring release from fouling release coatings[J]. Biofouling, 2000, 15(1/2/3): 73-81. |
18 | 弗兰克·琼斯. 有机涂料科学与技术[M]. 北京:化学工业出版社, 2002. |
Jones FRANK N. Oragnic coatings:Science and technology[M]. Beijing: Chemical Industry Press, 2002. | |
19 | 刘思琪, 刘斌, 宁玉杰, 等. 抗菌低表面能复合型海洋防污涂料的研究进展[J]. 表面技术, 2022, 51(5): 265-273, 324. |
LIU Siqi, LIU Bin, NING Yujie, et al. Progress in the antibacterial and low surface energy composite marine antifouling coatings[J]. Surface Technology, 2022, 51(5): 265-273, 324. | |
20 | MUELLER W J, NOWACKI L J. Ship’s hull coated with antifouling silicone rubber: US3702778[P]. 1972-11-14. |
21 | MILNE A. Anti-fouling marine compositions: US4025693[P]. 1977-05-24. |
22 | TRUBY K, WOOD C, STEIN J, et al. Evaluation of the performance enhancement of silicone biofouling-release coatings by oil incorporation[J]. Biofouling, 2000, 15(1/2/3): 141-150. |
23 | Leslie HOIPKEMEIER-WILSON, SCHUMACHER James F, CARMAN Michelle L, et al. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga ulva (enteromorpha)[J]. Biofouling, 2004, 20(1): 53-63. |
24 | JIANG Yuguo, ZHANG Zhanping, QI Yuhong. The compatibility of three silicone oils with polydimethylsiloxane and the microstructure and properties of their composite coatings[J]. Polymers, 2021, 13(14): 2355. |
25 | YANG Qiang, ZHANG Zhanping, QI Yuhong, et al. Influence of phenylmethylsilicone oil on anti-fouling and drag-reduction performance of silicone composite coatings[J]. Coatings, 2020, 10(12): 1239. |
26 | YANG Qiang, ZHANG Zhanping, QI Yuhong, et al. The antifouling and drag-reduction performance of alumina reinforced polydimethylsiloxane coatings containing phenylmethylsilicone oil[J]. Polymers, 2021, 13(18): 3067. |
27 | KOLLE Stefan, AHANOTU Onyemaechi, MEEKS Amos, et al. On the mechanism of marine fouling-prevention performance of oil-containing silicone elastomers[J]. Scientific Reports, 2022, 12(1): 1-13. |
28 | EDWARD Robbart. Ship’s hull coated with anti-fouling silicone resin and method of coating: US2986474[P]. 1961-05-30. |
29 | KROYER K. Marine structure having a surface coating for the prevention of accumulation of marine organisms: JP46371[P]. 1978-09-29. |
30 | ZHANG Dejin, ZHAO Susu, RONG Zhihao, et al. Silicone low surface energy antifouling coating modified by zwitterionic side chains with strong substrate adhesion[J]. European Polymer Journal, 2022, 179: 111529. |
31 | JIN Huichao, BING Wei, JIN E, et al. Bioinspired PDMS-phosphor-silicone rubber sandwich-structure coatings for combating biofouling[J]. Advanced Materials Interfaces, 2020, 7(4): 1901577. |
32 | XIONG Gang, ZHANG Zhanping, QI Yuhong. Effect of the properties of long afterglow phosphors on the antifouling performance of silicone fouling-release coating[J]. Progress in Organic Coatings, 2022, 170: 106965. |
33 | XI Xiaojun, ZHANG Zhanping, QI Yuhong. Preparation and properties of PED-TDI polyurethane-modified silicone coatings[J]. Polymers, 2022, 14(15): 3212. |
34 | SUN Jiawen, DUAN Jizhou, LIU Xiangju, et al. Environmentally benign smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties[J]. Applied Materials Today, 2022, 28: 101551. |
35 | 王光耀. 有机硅动态防污表面的设计与构筑研究[D]. 吉林: 东北电力大学, 2021. |
WANG Guangyao. Study on design and construction of dynamic silicone antifouling surface[D]. Jilin: Northeast Dianli University, 2021. | |
36 | FINLAY John A, CALLOW Maureen E, ISTA Linnea K, et al. The influence of surface wettability on the adhesion strength of settled spores of the green alga enteromorpha and the diatom Amphora[J]. Integrative and Comparative Biology, 2002, 42(6): 1116-1122. |
37 | BERQUE T. Coating for undersea protection: FR2157074[P]. 1973-06-01. |
38 | HELLIO C, YEBRA D. Advances in marine antifouling coatings and technologies[M]. Elsevier, 2009. |
39 | PULLIN R A. Surface energy characteristics and marine antifouling performance of poly(1H, 1H, 2H, 2H-perfluorodecanoyl diitaconate) film structures[J]. Materials Letters, 1999, 39(3): 142-148. |
40 | TSIBOUKLIS John, STONE Maureen, THORPE Adrian A, et al. Inhibiting bacterial adhesion onto surfaces: The non-stick coating approach[J]. International Journal of Adhesion and Adhesives, 2000, 20(2): 91-96. |
41 | JEON J, PARK Young Gwang, LEE Young Hee, et al. Preparation and properties of UV-curable fluorinated polyurethane acrylates containing crosslinkable vinyl methacrylate for antifouling coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129872. |
42 | MENG Yanbin, GAO Yunfang, LI Jingyu, et al. Preparation and characterization of cross-linked waterborne acrylic/PTFE composite coating with good hydrophobicity and anticorrosion properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129872. |
43 | YARBROUGH J, ROLLAND J, DESIMONE J, et al. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers[J]. Macromolecules, 2006, 39: 2521-2528. |
44 | WONG Tak Sing, KANG Sung Hoon, TANG Sindy K Y,et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
45 | LI Dandan, LIN Zaiwen, ZHU Jiahui, et al. An engineering-oriented approach to construct rough micro/nano-structures for anticorrosion and antifouling application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126590. |
46 | DEMIR CALISKAN Tugba, HUKUM Kubra Ozkan, CAYKARA Tuncer, et al. Toward the replacement of long-chain perfluoroalkyl compounds: Perfluoropolyether-based low surface energy grafted nanocoatings[J]. ACS Applied Polymer Materials, 2022, 4(2): 980-986. |
47 | RUIZ-SANCHEZ Antonio J, GUERIN Andrew J, ZUBIR Osama EI, et al. Preparation and evaluation of fouling-release properties of amphiphilic perfluoropolyether-zwitterion cross-linked polymer films[J]. Progress in Organic Coatings, 2020, 140: 105524. |
48 | XIE Qingyi, ZENG Haohang, PENG Qingmei, et al. Self-stratifying silicone coating with nonleaching antifoulant for marine anti-biofouling[J]. Advanced Materials Interfaces, 2019, 6(13): 1900535. |
49 | ZHU Benfeng, LIU Zehan, LIU Jiao, et al. Preparation of fluorinated/silanized polyacrylates amphiphilic polymers and their anticorrosion and antifouling performance[J]. Progress in Organic Coatings, 2020, 140: 105510. |
[1] | LEI Yu, TIAN Mengmeng, ZHANG Xinya, JIANG Xiang. Research progress on the self-healing property and applications of superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2624-2633. |
[2] | Yan BAO, Jingxiang CHANG. Research progress of durable superhydrophobic surface [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5148-5160. |
[3] | Ting LIANG, Zhenzhong FAN, Qingwang LIU, Jigang WANG, Li CAI, Yuanfeng FU, Qilei TONG. Research progress on the self-healing on superhydrophobic/superamphiphobic surface [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3185-3193. |
[4] | DING Hanwei,XUE Yongqiang,CUI Zixiang,GUO Wentao. Synthesis and properties of a kind of organosilicon quaternary ammonium salt with multi-heads in its molecular structure [J]. Chemical Industry and Engineering Progree, 2014, 33(02): 479-482. |
[5] | YANG Lei,CHEN Jianfang,YANG Jianjian,HUANG Aijing. Preparation of novel UV-curing Si-containing EA nanocoating and its performance [J]. Chemical Industry and Engineering Progree, 2012, 31(02 ): 378-382. |
[6] | ZHANG Xinsheng,WANG Jiexin,LE Yuan,CHEN Jianfeng. Research progress of biocides and resins for novel marine antifouling coatings [J]. Chemical Industry and Engineering Progree, 2011, 30(4): 848-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |