Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4866-4883.DOI: 10.16085/j.issn.1000-6613.2021-2405
• Materials science and technology • Previous Articles Next Articles
BIAN Yu(), ZHANG Baichao, ZHENG Hong()
Received:
2021-11-23
Revised:
2022-03-16
Online:
2022-09-27
Published:
2022-09-25
Contact:
ZHENG Hong
通讯作者:
郑红
作者简介:
边宇(1996—),女,硕士研究生,研究方向为环境化学。E-mail:2103190087@cugb.edu.cn。
基金资助:
CLC Number:
BIAN Yu, ZHANG Baichao, ZHENG Hong. Design, syntheses and applications of covalent organic frameworks with hierarchical porosities[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4866-4883.
边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2405
1 | LIANG Rongran, ZHAO Xin. Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities[J]. Organic Chemistry Frontiers, 2018, 5(22): 3341-3356. |
2 | MITRA T, WU X F, CLOWES R, et al. A soft porous organic cage crystal with complex gas sorption behavior[J]. Chemistry: a European Journal, 2011, 17(37): 10235-10240. |
3 | HE Yabing, ZHOU Wei, QIAN Guodong, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5657-5678. |
4 | VENKATARAMAN D, LEE S, ZHANG J S, et al. An organic solid with wide channels based on hydrogen bonding between macrocycles[J]. Nature, 1994, 371(6498): 591-593. |
5 | XIANG Zhonghua, CAO Dapeng. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718. |
6 | JIANG J X, SU F B, TREWIN A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie, 2007, 119(45): 8728-8732. |
7 | ZENG Fanxin, LIU Wujun, LUO Shiwei, et al. Design, preparation, and characterization of a novel hyper-cross-linked polyphosphamide polymer and its adsorption for phenol[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11614-11619. |
8 | BUDD P M, ELABAS E S, GHANEM B S, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5): 456-459. |
9 | FENG Xiao, DING Xuesong, JIANG Donglin. Covalent organic frameworks[J]. Chemical Society Reviews, 2012, 41(18): 6010-6022. |
10 | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
11 | HUANG Ning, WANG Ping, JIANG Donglin. Covalent organic frameworks: a materials platform for structural and functional designs[J]. Nature Reviews Materials, 2016, 1(10): 16068. |
12 | DIERCKS C S, YAGHI O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. |
13 | DIERCKS C S, KALMUTZKI M J, YAGHI O M. Covalent organic frameworks-organic chemistry beyond the molecule[J]. Molecules, 2017, 22(9): 1575. |
14 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
15 | WALLER P J, GÁNDARA F, YAGHI O M. Chemistry of covalent organic frameworks[J]. Accounts of Chemical Research, 2015, 48(12): 3053-3063. |
16 | BISBEY R P, DICHTEL W R. Covalent organic frameworks as a platform for multidimensional polymerization[J]. ACS Central Science, 2017, 3(6): 533-543. |
17 | LOHSE M S, BEIN T. Covalent organic frameworks: covalent organic frameworks: structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1870229. |
18 | 刘春晖, 马晓莉. 共价有机框架材料的最新进展[J]. 化工进展, 2019, 38(11): 4978-4990. |
LIU Chunhui, MA Xiaoli. Latest development of covalent organic frameworks[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4978-4990. | |
19 | 王珊, 冯霄, 王博. 共价有机框架材料的设计与制备[J]. 科学通报, 2018, 63(22):2229-2245. |
WANG Shan, FENG Xiao, WANG Bo. Design and synthesis of covalent organic frameworks[J]. Chinese Science Bulletin, 2018, 63(22): 2229-2245. | |
20 | HAN S S, FURUKAWA H, YAGHI O M, et al. Covalent organic frameworks as exceptional hydrogen storage materials[J]. Journal of the American Chemical Society, 2008, 130(35): 11580-11581. |
21 | ROGGE S M J, BAVYKINA A, HAJEK J, et al. Metal-organic and covalent organic frameworks as single-site catalysts[J]. Chemical Society Reviews, 2017, 46(11): 3134-3184. |
22 | GAO Qiang, LI Xing, NING Guohong, et al. Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing[J]. Chemical Communications, 2018, 54(19): 2349-2352. |
23 | LEI Zhendong, YANG Qinsi, XU Yi, et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry[J]. Nature Communications, 2018, 9: 576. |
24 | SICK T, HUFNAGEL A G, KAMPMANN J, et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting[J]. Journal of the American Chemical Society, 2018, 140(6): 2085-2092. |
25 | URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13): 4570-4571. |
26 | MA Li, WANG Shan, FENG Xiao, et al. Recent advances of covalent organic frameworks in electronic and optical applications[J]. Chinese Chemical Letters, 2016, 27(8): 1383-1394. |
27 | 钱成. 二维异孔共价有机框架构筑新策略的研究[D]. 长沙: 湖南大学, 2018. |
QIAN Cheng. A study on novel strategies for constructing 2D heteropore covalent organic frameworks[D]. Changsha: Hunan University, 2018. | |
28 | 葛胜涛, 邓先功, 毕玉保, 等. 多级孔材料研究进展[J]. 材料导报, 2018, 32(13): 2195-2201, 2213. |
GE Shengtao, DENG Xiangong, BI Yubao, et al. Research progress of hierarchical porous materials[J]. Materials Review, 2018, 32(13): 2195-2201, 2213. | |
29 | KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie International Edition, 2008, 47(18): 3450-3453. |
30 | BOJDYS M J, JEROMENOK J, THOMAS A, et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity[J]. Advanced Materials, 2010, 22(19): 2202-2205. |
31 | WANG Keke, HUANG Hongliang, LIU Dahuan, et al. Covalent triazine-based frameworks with ultramicropores and high nitrogen contents for highly selective CO2 capture[J]. Environmental Science & Technology, 2016, 50(9): 4869-4876. |
32 | URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. Journal of the American Chemical Society, 2011, 133(30): 11478-11481. |
33 | DAS G, SKORJANC T, SHARMA S K, et al. Viologen-based conjugated covalent organic networks via zincke reaction[J]. Journal of the American Chemical Society, 2017, 139(28): 9558-9565. |
34 | NAGAI A, CHEN Xiong, FENG Xiao, et al. A squaraine-linked mesoporous covalent organic framework[J]. Angewandte Chemie International Edition, 2013, 52(13): 3770-3774. |
35 | ZHUANG Xiaodong, ZHAO Wuxue, ZHANG Fan, et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton[J]. Polymer Chemistry, 2016, 7(25): 4176-4181. |
36 | RAO M R, FANG Y, DE FEYTER S, et al. Conjugated covalent organic frameworks via Michael addition-elimination[J]. Journal of the American Chemical Society, 2017, 139(6): 2421-2427. |
37 | YANG Haishen, DU Ya, WAN Shun, et al. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles[J]. Chemical Science, 2015, 6(7): 4049-4053. |
38 | BALDWIN L A, CROWE J W, SHANNON M D, et al. 2D covalent organic frameworks with alternating triangular and hexagonal pores[J]. Chemistry of Materials, 2015, 27(18): 6169-6172. |
39 | DALAPATI S, JIN E Q, ADDICOAT M, et al. Highly emissive covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(18): 5797-5800. |
40 | ZHOU Tianyou, XU Shunqi, WEN Qiang, et al. One-step construction of two different kinds of pores in a 2D covalent organic framework[J]. Journal of the American Chemical Society, 2014, 136(45): 15885-15888. |
41 | TIAN Yuan, XU Shunqi, LIANG Rongran, et al. Construction of two heteropore covalent organic frameworks with Kagome lattices[J]. CrystEngComm, 2017, 19(33): 4877-4881. |
42 | QIAN Cheng, QI Qiaoyan, JIANG Guofang, et al. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange[J]. Journal of the American Chemical Society, 2017, 139(19): 6736-6743. |
43 | LI Yusen, CHEN Qing, XU Tiantian, et al. De novo design and facile synthesis of 2D covalent organic frameworks: a two-in-one strategy[J]. Journal of the American Chemical Society, 2019, 141(35): 13822-13828. |
44 | ABUZEID H R, EL-MAHDY A F M, KUO S W. Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units[J]. Microporous and Mesoporous Materials, 2020, 300: 110151. |
45 | WALLER P J, LYLE S J, OSBORN POPP T M, et al. Chemical conversion of linkages in covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15519-15522. |
46 | PANG Zhongfu, XU Shunqi, ZHOU Tianyou, et al. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy[J]. Journal of the American Chemical Society, 2016, 138(14): 4710-4713. |
47 | JIN S B, SAKURAI T, KOWALCZYK T, et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts[J]. Chemistry: A European Journal, 2014, 20(45): 14608-14613. |
48 | CROWE J W, BALDWIN L A, MCGRIER P L. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units[J]. Journal of the American Chemical Society, 2016, 138(32): 10120-10123. |
49 | KELLER N, SICK T, BACH N N, et al. Dibenzochrysene enables tightly controlled docking and stabilizes photoexcited states in dual-pore covalent organic frameworks[J]. Nanoscale, 2019, 11(48): 23338-23345. |
50 | DONG Jinqiao, LI Xu, Shing Bo PEH, et al. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification[J]. Chemistry of Materials, 2019, 31(1): 146-160. |
51 | LIANG Rongran, CUI Fuzhi, Ruhan A, et al. A study on constitutional isomerism in covalent organic frameworks: controllable synthesis, transformation, and distinct difference in properties[J]. CCS Chemistry, 2020, 2(2): 139-145. |
52 | COOPER A I. Conjugated microporous polymers[J]. Advanced Materials, 2009, 21(12): 1291-1295. |
53 | RITCHIE L K, TREWIN A, REGUERA-GALAN A, et al. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes[J]. Microporous and Mesoporous Materials, 2010, 132(1/2): 132-136. |
54 | WEI Hao, CHAI Shuangzhi, HU Nantao, et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chemical Communications, 2015, 51(61): 12178-12181. |
55 | GUAN Xinyu, MA Yunchao, LI Hui, et al. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(13): 4494-4498. |
56 | BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(14): 5328-5331. |
57 | DAS G, BALAJI SHINDE D, KANDAMBETH S, et al. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding[J]. Chemical Communications, 2014, 50(84): 12615-12618. |
58 | COLSON J W, WOLL A R, MUKHERJEE A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene[J]. Science, 2011, 332(6026): 228-231. |
59 | DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. |
60 | DAI W Y, SHAO F, SZCZERBIŃSKI J, et al. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angewandte Chemie, 2016, 128(1): 221-225. |
61 | GUAN Cuizhong, WANG Dong, WAN Lijun. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation[J]. Chemical Communications, 2012, 48(24): 2943-2945. |
62 | WANG Z Q, COHEN S M. Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach[J]. Journal of the American Chemical Society, 2009, 131(46): 16675-16677. |
63 | COHEN S M. Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 970-1000. |
64 | HE H B, CARBALLO-JANE E, TONG X C, et al. Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction[J]. Journal of Chromatography B, 2015, 997: 154-161. |
65 | PANG Zhongfu, ZHOU Tianyou, LIANG Rongran, et al. Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents[J]. Chemical Science, 2017, 8(5): 3866-3870. |
66 | CUI Fuzhi, LIANG Rongran, QI Qiaoyan, et al. Efficient removal of Cr(Ⅵ) from aqueous solutions by a dual-pore covalent organic framework[J]. Advanced Sustainable Systems, 2019, 3(4): 1800150. |
67 | GUO L, JIA S, DIERCKS C S, et al. Amidation, esterification, and thioesterification of a carboxyl-functionalized covalent organic framework[J]. Angewandte Chemie International Edition, 2020, 59(5): 2023-2027. |
68 | FURUKAWA H, YAGHI O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
69 | DOONAN C J, TRANCHEMONTAGNE D J, GLOVER T G, et al. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2(3): 235-238. |
70 | LI Zhongping, ZHI Yongfeng, FENG Xiao, et al. An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage[J]. Chemistry: A European Journal, 2015, 21(34): 12079-12084. |
71 | YIN Zhijian, XU Shunqi, ZHAN Tianguang, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53(53): 7266-7269. |
72 | HUANG Ning, ZHAI Lipeng, XU Hong, et al. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions[J]. Journal of the American Chemical Society, 2017, 139(6): 2428-2434. |
73 | SUN Q, AGUILA B, PERMAN J, et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793. |
74 | LI Wei, JIANG Hongxin, GENG Yue, et al. Facile removal of phytochromes and efficient recovery of pesticides using heteropore covalent organic framework-based magnetic nanospheres and electrospun films[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20922-20932. |
75 | XIONG Yifeng, LIAO Qiaobo, HUANG Zhengping, et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene[J]. Advanced Materials, 2020, 32(9): e1907242. |
76 | ZHAO F L, LIU H M, MATHE S D R, et al. Covalent organic frameworks: from materials design to biomedical application[J]. Nanomaterials, 2017, 8(1): 15. |
77 | SUN Q, AGUILA B, LAN P C, et al. Tuning pore heterogeneity in covalent organic frameworks for enhanced enzyme accessibility and resistance against denaturants[J]. Advanced Materials, 2019, 31(19): e1900008. |
78 | SUN Q, FU C-W, AGUILA B, et al. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(3): 984-992. |
79 | FANG Qianrong, GU Shuang, ZHENG Jie, et al. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angewandte Chemie International Edition, 2014, 53(11): 2878-2882. |
80 | DIERCKS C S, LIN S, KORNIENKO N, et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction[J]. Journal of the American Chemical Society, 2018, 140(3): 1116-1122. |
81 | WANG Kewei, YANG Liming, WANG Xi, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angewandte Chemie International Edition, 2017, 56(45): 14149-14153. |
82 | VARDHAN H, AL-ENIZI A M, NAFADY A, et al. Single-pore versus dual-pore bipyridine-based covalent-organic frameworks: an insight into the heterogeneous catalytic activity for selective C—H functionalization[J]. Small, 2021, 17(22): e2003970. |
83 | YANG Yan, LU Yang, ZHANG Hongyu, et al. Decoration of active sites in covalent-organic framework: an effective strategy of building efficient photocatalysis for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13376-13384. |
[1] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[2] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[3] | TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594. |
[4] | XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271. |
[5] | CHEN Qi, WANG Wentao, ZHANG Zhipeng, YAN Taihong. Progress of covalent framework for radionuclides absorption [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 241-255. |
[6] | CHEN Jiansong, SUN Nannan, GAO Qiang, WEI Wei. Novel synthesis of olefin-linked covalent organic frameworks via aldol condensation [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6765-6776. |
[7] | Yongtao NI, Qinxin ZHAO, Yong GUI, Yungang WANG, Huaishuang SHAO. Structural design and numerical analysis of two-stagelow-pressure ejector [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 69-76. |
[8] | Xiaozhi XU, Biao LI, Kaiqiang SHI, Siyuan DONG, Zuchao JIN, Jingbin HAN. Recent advances in LDHs-based gas barrier materials [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2177-2186. |
[9] | Shiping ZHAN,Zetao WAN,Jingchang WANG,Jinqiu FU,Qicheng ZHAO. Synthesis and modification of biomedical material polylactic acid [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 199-205. |
[10] | Chunhui LIU,Xiaoli MA. Latest development of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4978-4990. |
[11] | Famei QIN, Xueqing QIU, Chuan SUN, Zixian DING, Zhiqiang FANG. Research progress in nanocellulose for the removal of heavy metal ions in water [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3390-3401. |
[12] | Yuxuan XU, Jinian YANG, Shibin NIE. Functionalized nickel phyllosilicate and applications in magnetic, electrical and catalytic fields [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2835-2846. |
[13] | MENG Rongqian, LI Qiaoling, JIN Riya. Progress of titanium dioxide nanostructures as carriers in sustained and controlled drug-release delivery system [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3980-3987. |
[14] | YU Bin, ZHAO Xiaoming, SUN Tian. Design and properties of nanofiber filter based on fiber orientation [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3966-3973. |
[15] | SHANG Yang, WANG Yueshe. Structural design and numerical analysis of single nozzle low pressure ejector [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 107-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |