Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3865-3876.DOI: 10.16085/j.issn.1000-6613.2021-1650
• Resources and environmental engineering • Previous Articles Next Articles
LONG Hongming1,2(), DING Long2, QIAN Lixin2(), CHUN Tiejun2, ZHANG Hongliang1, YU Zhengwei2
Received:
2021-08-04
Revised:
2021-09-10
Online:
2022-07-23
Published:
2022-07-25
Contact:
QIAN Lixin
龙红明1,2(), 丁龙2, 钱立新2(), 春铁军2, 张洪亮1, 余正伟2
通讯作者:
钱立新
作者简介:
龙红明(1979—),男,博士,教授,研究方向为冶金烟气污染物减排。E-mail:基金资助:
CLC Number:
LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876.
龙红明, 丁龙, 钱立新, 春铁军, 张洪亮, 余正伟. 烧结烟气中NO x 和二英的减排现状及发展趋势[J]. 化工进展, 2022, 41(7): 3865-3876.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1650
元素 | 质量分数/% |
---|---|
TiO2 | 65~90 |
WO3 | 3~10 |
V2O5 | 0.5~3 |
SiO2 | 3~15 |
CaO | 1~5 |
Al2O3 | 0.5~5 |
Sx | 0.5~2 |
元素 | 质量分数/% |
---|---|
TiO2 | 65~90 |
WO3 | 3~10 |
V2O5 | 0.5~3 |
SiO2 | 3~15 |
CaO | 1~5 |
Al2O3 | 0.5~5 |
Sx | 0.5~2 |
催化剂/载体 | C150℃/% | T90/℃ | 反应条件 | 参考文献 |
---|---|---|---|---|
Ce0.5Ti0.5 | 0 | 375 | 1000μL/L CB;10% O2/N2;GHSV=30000h-1 | [ |
Ce0.14-Mn0.86 | 20 | 236 | 1000μL/L CB;10% O2/N2;GHSV=15000h-1 | [ |
Cr0.75Ce0.25/Ti | 20 | 225 | 500μL/L CB; GHSV=20000h-1 | [ |
Co0.2Ce0.2Mn0.6 | 20 | 325 | 500μL/L CB; GHSV=15000h-1 | [ |
V0.02/CeO2 | 5 | 225 | 1000μL/L CB;GHSV=30000h-1 | [ |
Cu0.15Mn0.15Ce0.7O x | 2 | 255 | 600μL/L CB;21% O2/N2;GHSV=30000h-1 | [ |
CeLa/Mn(0.86) | 20 | 250 | 1000μL/L CB;10% O2/N2;GHSV=15000h-1 | [ |
V0.05-Ce0.05/TiO2 | — | 200 | 2.6ngI-TEQ m-3;11% O2/N2;GHSV=10000h-1 | [ |
Ce0.15-V0.025-Ti/GO | 77 | 200 | 100μL/L CB;20%O2/N2;GHSV=30000h-1 | [ |
催化剂/载体 | C150℃/% | T90/℃ | 反应条件 | 参考文献 |
---|---|---|---|---|
Ce0.5Ti0.5 | 0 | 375 | 1000μL/L CB;10% O2/N2;GHSV=30000h-1 | [ |
Ce0.14-Mn0.86 | 20 | 236 | 1000μL/L CB;10% O2/N2;GHSV=15000h-1 | [ |
Cr0.75Ce0.25/Ti | 20 | 225 | 500μL/L CB; GHSV=20000h-1 | [ |
Co0.2Ce0.2Mn0.6 | 20 | 325 | 500μL/L CB; GHSV=15000h-1 | [ |
V0.02/CeO2 | 5 | 225 | 1000μL/L CB;GHSV=30000h-1 | [ |
Cu0.15Mn0.15Ce0.7O x | 2 | 255 | 600μL/L CB;21% O2/N2;GHSV=30000h-1 | [ |
CeLa/Mn(0.86) | 20 | 250 | 1000μL/L CB;10% O2/N2;GHSV=15000h-1 | [ |
V0.05-Ce0.05/TiO2 | — | 200 | 2.6ngI-TEQ m-3;11% O2/N2;GHSV=10000h-1 | [ |
Ce0.15-V0.025-Ti/GO | 77 | 200 | 100μL/L CB;20%O2/N2;GHSV=30000h-1 | [ |
1 | YU Z Y, FAN X H, GAN M, et al. Effect of Ca-Fe oxides additives on NO x reduction in iron ore sintering[J]. Journal of Iron and Steel Research, International, 2017, 24(12): 1184-1189. |
2 | 于勇, 朱廷钰, 刘霄龙. 中国钢铁行业重点工序烟气超低排放技术进展[J]. 钢铁, 2019, 54(9): 1-11. |
YU Yong, ZHU Tingyu, LIU Xiaolong. Progress of ultra-low emission technology for key processes of iron and steel industry in China[J]. Iron & Steel, 2019, 54(9): 1-11. | |
3 | LI X, BEI N F, HU B, et al. Mitigating NO x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei, China[J]. Environmental Pollution, 2021, 279: 116931. |
4 | LI S M, LIU G R, ZHENG M H, et al. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes[J]. Journal of Hazardous Materials, 2017, 331: 63-70. |
5 | 章骅, 杨瑞, 邵立明, 等. 二𫫇英生成抑制剂及其阻滞机理研究现状与展望[J]. 化工进展, 2020, 39(4): 1485-1492. |
ZHANG Hua, YANG Rui, SHAO Liming, et al. Progresses in the inhibitors for suppressing de novo formation of PCDD/Fs: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1485-1492. | |
6 | 李海英, 郑雅欣, 王锦. 不同烧结烟气脱硫工艺应用比较与分析[J]. 环境工程, 2018, 36(3): 102-107. |
LI Haiying, ZHENG Yaxin, WANG Jing. Comparison and analysis of different desulfurization technologies applied in sintering flue gas[J]. Environmental Engineering, 2018, 36(3): 102-107. | |
7 | 龙红明,肖俊军,李家新,等. 烧结过程氮氧化物的生成机理与减排方法[C]//第九届中国钢铁年会论文集. 北京, 2013. |
LONG Hongming, XIAO Junjun, LI Jiaxin, et al. Formation mechanism and emission reduction methods of nitrogen oxides in sintering process [C]//Proceedings of the 9th China Iron and Steel Annual Conference. Beijing, 2013. | |
8 | 龙红明, 李家新, 王平, 等. 尿素对减少铁矿烧结过程二𫫇英排放的作用机理[J]. 过程工程学报, 2010, 10(5): 944-949. |
LONG Hongming, LI Jiaxin, WANG Ping, et al. Reaction mechanism of emission reduction of dioxin by addition of urea in iron ore sintering process[J]. The Chinese Journal of Process Engineering, 2010, 10(5): 944-949. | |
9 | OOI T C, LU L M. Formation and mitigation of PCDD/Fs in iron ore sintering[J]. Chemosphere, 2011, 85(3): 291-299. |
10 | QIAN L X, CHUN T J, LONG H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering[J]. Process Safety and Environmental Protection, 2018, 117: 82-91. |
11 | 汤铃, 贾敏, 伯鑫, 等. 中国钢铁行业排放清单及大气环境影响研究[J]. 中国环境科学, 2020, 40(4): 1493-1506. |
TANG Ling, JIA Min, BO Xin, et al. High resolution emission inventory and atmospheric environmental impact research in Chinese iron and steel industry[J]. China Environmental Science, 2020, 40(4): 1493-1506. | |
12 | KAWAGUCHI T, HARA M. Utilization of biomass for iron ore sintering[J]. ISIJ International, 2013, 53(9): 1599-1606. |
13 | GAN M, FAN X H, CHEN X L, et al. Reduction of pollutant emission in iron ore sintering process by applying biomass fuels[J]. ISIJ International, 2012, 52(9): 1574-1578. |
14 | RYAN S P, ALTWICKER E R. Understanding the role of iron chlorides in the de novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans[J]. Environmental Science & Technology, 2004, 38(6): 1708-1717. |
15 | WANG T S, ANDERSON D R, THOMPSON D, et al. Studies into the formation of dioxins in the sintering process used in the iron and steel industry. 1. Characterisation of isomer profiles in particulate and gaseous emissions[J]. Chemosphere, 2003, 51(7): 585-594. |
16 | 张玉才, 龙红明, 春铁军, 等. 原料铜和氯元素对二𫫇英排放的影响及抑制技术[J]. 钢铁, 2015, 50(12): 42-46. |
ZHANG Yucai, LONG Hongming, CHUN Tiejun, et al. Influences of Cu and Cl elements from raw materials on the emission of PCDD/Fs and its emissionreduction technology[J]. Iron & Steel, 2015, 50(12): 42-46. | |
17 | 赵利明, 李咸伟, 马洛文. 烧结过程NO x 形成机理及减排措施探讨[J]. 烧结球团, 2015, 40(5): 57-60. |
ZHAO Liming, LI Xianwei, MA Luowen. Discussion on NO x formation mechanism in sintering process and its emission reduction measures[J]. Sintering and Pelletizing, 2015, 40(5): 57-60. | |
18 | 潘建. 铁矿烧结烟气减量排放基础理论与工艺研究[D]. 长沙: 中南大学, 2007. |
PAN Jian. Theoretical and process studies of the abatement of flue gas emissions during iron ore sintering[D]. Changsha: Central South University, 2007. | |
19 | KATAYAMA K, KASAMA S. Influence of lime coating coke on NO x concentration in sintering process[J]. ISIJ International, 2016, 56(9): 1563-1569. |
20 | 吕薇. 铁矿烧结过程NO x 生成行为及其减排技术[D]. 长沙: 中南大学, 2014. |
Wei LYU. Formation behavior and emission reduction technology of NO x in sintering process[D]. Changsha: Central South University, 2014. | |
21 | 阙志刚, 吴胜利, 艾仙斌. 基于优化粗粒级固体燃料赋存形态的铁矿烧结过程NO x 减排[J]. 工程科学学报, 2020, 42(2): 163-171. |
QUE Zhigang, WU Shengli, AI Xianbin. To reduce NO x emission based on optimizing the existing states of coarse coke breeze during iron ore sintering process[J]. Chinese Journal of Engineering, 2020, 42(2): 163-171. | |
22 | KASAMA S, YAMAMURA Y, WATANABE K. Investigation on the dioxin emission from a commercial sintering plant[J]. ISIJ International, 2006, 46(7): 1014-1019. |
23 | 杨红博, 李咸伟, 俞勇梅, 等. 热风烧结对二𫫇英生成的影响研究[J]. 烧结球团, 2011, 36(1): 47-51. |
YANG Hongbo, LI Xianwei, YU Yongmei, et al. Study on influence of hot air sintering on dioxin formation[J]. Sintering and Pelletizing, 2011, 36(1): 47-51. | |
24 | YU Y M, ZHENG M H, LI X W, et al. Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling[J]. Journal of Environmental Sciences, 2012, 24(5): 875-881. |
25 | 龙红明, 王毅璠, 伍英, 等. 面向污染物减排的烧结烟气循环研究与应用进展[J]. 鞍钢技术, 2020(1): 9-14. |
LONG Hongming, WANG Yifan, WU Ying, et al. Study on sintering flue gas for recycling of pollutants aimed at emission reduction and progress of applications[J]. Angang Technology, 2020(1): 9-14. | |
26 | 李咸伟,王如意,石磊,等. 烧结废气循环与深度净化技术的研发与应用[C]// 第五届宝钢学术年会论文集. 上海, 2013. |
LI Xianwei, WANG Ruyi, SHI Lei, et al. Development and commercial application of sintering flue gas recirculating(SFGR) process and advanced purification to emission gas[C]//Proceedings of the 5th Baosteel Academic Annual Conference. Shanghai: Baosteel, 2013. | |
27 | FU J Y, LI X D, CHEN T, et al. PCDD/Fs’ suppression by sulfur-amine/ammonium compounds[J]. Chemosphere, 2015, 123: 9-16. |
28 | RUOKOJÄRVI P, AATAMILA M, TUPPURAINEN K, et al. Effect of urea on fly ash PCDD/F concentrations in different particle sizes[J]. Chemosphere, 2001, 43(4/5/6/7): 757-762. |
29 | SHAO K, YAN J H, LI X D, et al. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system[J]. Chemosphere, 2010, 78(10): 1230-1235. |
30 | MA H T, DU N, LIN X Y, et al. Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste[J]. Science of the Total Environment, 2018, 633: 1263-1271. |
31 | LI Q Q, LI L W, SU G J, et al. Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide[J]. Journal of Hazardous Materials, 2016, 317: 394-402. |
32 | 林晓青, 李晓东, 陈彤, 等. 硫氨基循环抑制烟气二𫫇英生成的试验研究[J]. 环境科学学报, 2016, 36(1): 289-293. |
LIN Xiaoqing, LI Xiaodong, CHEN Tong, et al. Experimental study on dioxin inhibition in incinerators by S-N recycling[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 289-293. | |
33 | LONG H M, LI J X, WANG P. Influence of dioxin reduction on chemical composition of sintering exhaust gas with adding urea[J]. Journal of Central South University, 2012, 19(5): 1359-1363. |
34 | LONG H M, LI J X, WANG P, et al. Emission reduction of dioxin in iron ore sintering by adding urea as inhibitor[J]. Ironmaking & Steelmaking, 2011, 38(4): 258-262. |
35 | LONG H M, WU X J, CHUN T J, et al. A pilot-scale study of selective desulfurization via urea addition in iron ore sintering[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(11): 1239-1243. |
36 | 邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路[J]. 工程科学学报, 2021, 43(1): 1-9. |
XING Yi, ZHANG Wenbo, SU Wei, et al. Research of ultra-low emission technologies of the iron and steel industry in China[J]. Chinese Journal of Engineering, 2021, 43(1): 1-9. | |
37 | LIN F W, WANG Z H, ZHANG Z M, et al. Flue gas treatment with ozone oxidation: an overview on NO x, organic pollutants, and mercury[J]. Chemical Engineering Journal, 2020, 382: 123030. |
38 | LIU S H, YAN N Q, LIU Z R, et al. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants[J]. Environmental Science & Technology, 2007, 41(4): 1405-1412. |
39 | JOHANSSON J, NORMANN F, SARAJLIC N, et al. Technical-scale evaluation of scrubber-based, co-removal of NO x and SO x species from flue gases via gas-phase oxidation[J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 21904-21912. |
40 | HAO R L, MAO X Z, MA Z, et al. Multi-air-pollutant removal by using an integrated system: key parameters assessment and reaction mechanism[J]. Science of the Total Environment, 2020, 710: 136434. |
41 | ZHAO Y, HAO R L, QI M. Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0 [J]. Chemical Engineering Journal, 2015, 269: 159-167. |
42 | ZHAO Y, HAN Y H, MA T Z, et al. Simultaneous desulfurization and denitrification from flue gas by ferrate(Ⅵ)[J]. Environmental Science & Technology, 2011, 45(9): 4060-4065. |
43 | 韩加友, 洪建国, 张玉文. 烧结烟气臭氧氧化-半干法吸收脱硫脱硝实践[J]. 中国冶金, 2019, 29(11): 76-81. |
HAN Jiayou, HONG Jianguo, ZHANG Yuwen. Practice of desulfurzation and denitrition of sintering waste gas with method of ozone oxidation and semi-dry absorption[J]. China Metallurgy, 2019, 29(11): 76-81. | |
44 | 侯长江, 田京雷, 王倩. 臭氧氧化脱硝技术在烧结烟气中的应用[J]. 河北冶金, 2019(3): 67-70. |
HOU Changjiang, TIAN Jinglei, WANG Qian. Application of ozone oxidation denitrification in sintering flue gas[J]. Hebei Metallurgy, 2019(3): 67-70. | |
45 | 胡沈达, 苏伟, 邢奕, 等. O3氧化-湿式镁法同步脱除烧结烟气中NO x 和SO2的中试研究[J]. 环境工程, 2020, 38(5): 102-106. |
HU Shenda, SU Wei, XING Yi, et al. Pilot-scale test on removal of NO x and SO2 from sintering flue gas by ozone oxidation combined with magnesium wet absorption[J]. Environmental Engineering, 2020, 38(5): 102-106. | |
46 | YAN Z, LIU L L, ZHANG Y L, et al. Activated semi-coke in SO2 removal from flue gas: selection of activation methodology and desulfurization mechanism study[J]. Energy & Fuels, 2013, 27(6): 3080-3089. |
47 | TALUKDAR P, BHADURI B, VERMA N. Catalytic oxidation of NO over CNF/ACF-supported CeO2 and Cu nanoparticles at room temperature[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12537-12547. |
48 | 赵德生. 太钢450m2烧结机烟气脱硫脱硝工艺实践[C]// 2011年全国烧结烟气脱硫技术交流会论文集. 太原, 2011: 17-24, 35. |
ZHAO Desheng. The pratice of desulphurizing and denitrating in TISCO 450m2 sinter machine gas[C]//Proceedings of 2011 National Sintering Flue Gas Desulfurization Technology Exchange Meeting.Taiyuan, 2011: 17-24, 35. | |
49 | 汪庆国, 朱彤, 李勇. 宝钢烧结烟气活性炭净化工艺和装备[J]. 钢铁, 2018, 53(3): 87-95. |
WANG Qingguo, ZHU Tong, LI Yong. Sintering flue gas purifying process and equipment by use of activated coke in Baosteel[J]. Iron & Steel, 2018, 53(3): 87-95. | |
50 | 韩健, 阎占海, 邵久刚. 逆流式活性炭烟气脱硫脱硝技术特点及应用[J]. 烧结球团, 2018, 43(6): 13-18. |
HAN Jian, YAN Zhanhai, SHAO Jiugang. Technical characteristics of counter flow active carbon-flue gas desulphurization and denitrification process and its application[J]. Sintering and Pelletizing, 2018, 43(6): 13-18. | |
51 | 尹子骏, 苏胜, 王中辉, 等. 燃煤烟气中SO3与NH4HSO4生成特性及其控制方法研究进展[J]. 化工进展, 2021, 40(4): 2328-2337. |
YIN Zijun, SU Sheng, WANG Zhonghui, et al. Research progress on the characteristics and control methods of SO3 and NH4HSO4 formation in coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2328-2337. | |
52 | 周茂军, 张代华. 宝钢烧结烟气超低排放技术集成与实践[J]. 钢铁, 2020, 55(2): 144-151. |
ZHOU Maojun, ZHANG Daihua. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel[J]. Iron & Steel, 2020, 55(2): 144-151. | |
53 | DU C C, LU S Y, WANG Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J]. Chemical Engineering Journal, 2018, 334: 519-544. |
54 | JI S S, LI X D, REN Y, et al. Ozone-enhanced oxidation of PCDD/Fs over V2O5-TiO2-based catalyst[J]. Chemosphere, 2013, 92(3): 265-272. |
55 | WENG X L, XUE Y H, CHEN J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5-WO3/TiO2 catalyst: the effect of heavy metal Pb[J]. Journal of Hazardous Materials, 2020, 387: 121705. |
56 | JANSSEN F, MEIJER R. Quality control of DeNO x catalysts: performance testing, surface analysis and characterization of DeNO x catalysts[J]. Catalysis Today, 1993, 16(2): 157-185. |
57 | TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176): 1217-1219. |
58 | RAMIS G, YI L, BUSCA G. Ammonia activation over catalysts for the selective catalytic reduction of NO x and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catalysis Today, 1996, 28(4): 373-380. |
59 | LIU X L, WANG J, WANG X, et al. Simultaneous removal of PCDD/Fs and NO x from the flue gas of a municipal solid waste incinerator with a pilot plant[J]. Chemosphere, 2015, 133: 90-96. |
60 | 梁丽丽. 垃圾焚烧发电烟气中NO x 污染控制技术综述[J]. 环境工程, 2017, 35(2): 64-67, 88. |
LIANG Lili. Control technology on NO x from msw incineration power plant[J]. Environmental Engineering, 2017, 35(2): 64-67, 88. | |
61 | 李想. 废旧脱硝催化剂中毒机制与再生技术研究[D]. 北京: 清华大学, 2017. |
LI Xiang. The research of deactivation mechanism and regeneration technology for used denitration catalysts[D]. Beijing: Tsinghua University, 2017. | |
62 | PHIL H H, REDDY M P, KUMAR P A, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NO x at low temperatures[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 301-308. |
63 | HE Y Y, FORD M E, ZHU M H, et al. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2016, 193: 141-150. |
64 | CROCKER C R, BENSON S A, LAUMB J D. SCR catalyst blinding due to sodium and calcium sulfate formation[J]. Prep. Pap.-Am. Chem. Soc. Div. Fuel. Chem., 2004, 49(1): 169-172. |
65 | WANG C Z, YANG S J, CHANG H Z, et al. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: acidity, surface species and catalytic activity[J]. Chemical Engineering Journal, 2013, 225: 520-527. |
66 | 朱崇兵, 金保升, 仲兆平, 等. V2O5-WO3/TiO2烟气脱硝催化剂的载体选择[J]. 中国电机工程学报, 2008, 28(11): 41-47. |
ZHU Chongbing, JIN Baosheng, ZHONG Zhaoping, et al. Selection of carrier for V2O5-WO3/TiO2 de-NO x catalyst[J]. Proceedings of the CSEE, 2008, 28(11): 41-47. | |
67 | ARGYLE M, BARTHOLOMEW C. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
68 | 姚杰, 仲兆平. 蜂窝状SCR脱硝催化剂成型配方选择[J]. 中国环境科学, 2013, 33(12): 2148-2156. |
YAO Jie, ZHONG Zhaoping. Select of molding formulations of honeycomb SCR DeNO x catalysts[J]. China Environmental Science, 2013, 33(12): 2148-2156. | |
69 | 赵利明, 陈海波. SCR烟气脱硝技术在宝钢股份4#烧结机的应用[J]. 烧结球团, 2018, 43(6): 24-28, 37. |
ZHAO Liming, CHEN Haibo. Application of SCR flue gas denitrification technology in No.4 sinter machine of Baosteel Co., Ltd.[J]. Sintering and Pelletizing, 2018, 43(6): 24-28, 37. | |
70 | 孙东, 梁春明. 烧结烟气SCR脱硝技术的应用实践[J]. 山东冶金, 2020, 42(3): 52-54. |
SUN Dong, LIANG Chunming. Application of SCR denitration technology for sintered flue gas[J]. Shandong Metallurgy, 2020, 42(3): 52-54. | |
71 | KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NO x reduction with NH3 at low temperatures[J]. Applied Catalysis A: General, 2007, 327(2): 261-269. |
72 | TANG X F, LI J H, SUN L, et al. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3 [J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 156-162. |
73 | 管静, 兰喜龙, 孙红, 等. 掺杂元素对Mn基催化剂SCR性能及抗硫性能的影响[J]. 化工进展, 2020, 39(6): 2440-2446. |
GUAN Jing, LAN Xilong, SUN Hong, et al. Influence of different doped metal cations on the activity and SO2 resistance of Mn based catalysts for NH3-SCR reaction[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2440-2446. | |
74 | WU Z B, JIANG B Q, LIU Y, et al. Experimental study on a low-temperature SCR catalyst based on MnO x /TiO2 prepared by sol-gel method[J]. Journal of Hazardous Materials, 2007, 145(3): 488-494. |
75 | CHEN H P, QI X, LIANG Y H, et al. Effect of Fe reduced-modification on TiO2 supported Fe-Mn catalyst for NO removal by NH3 at low temperature[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126(1): 327-339. |
76 | 刘纳, 何峰, 谢峻林, 等. Fe掺杂Mn/TiO2低温脱硝催化剂的催化性能研究[J]. 人工晶体学报, 2017, 46(3): 490-494, 500. |
LIU Na, HE Feng, XIE Junlin, et al. Catalytic performance of Fe-doped Mn/TiO2 catalysts for low-temperature denitration[J]. Journal of Synthetic Crystals, 2017, 46(3): 490-494, 500. | |
77 | YU M F, LI W W, LI X D, et al. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs[J]. Chemosphere, 2016, 156: 383-391. |
78 | TANG C J, ZHANG H L, DONG L. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Catalysis Science & Technology, 2016, 6(5): 1248-1264. |
79 | ZHANG Z P, CHEN L Q, LI Z B, et al. Activity and SO2 resistance of amorphous Ce a TiO x catalysts for the selective catalytic reduction of NO with NH3: in situ DRIFT studies[J]. Catalysis Science & Technology, 2016, 6(19): 7151-7162. |
80 | WANG F M, SHEN B X, ZHU S W, et al. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance[J]. Fuel, 2019, 249: 54-60. |
81 | FAN Y M, LING W, HUANG B C, et al. The synergistic effects of cerium presence in the framework and the surface resistance to SO2 and H2O in NH3-SCR[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 108-119. |
82 | REN S, YANG J, ZHANG T S, et al. Role of cerium in improving NO reduction with NH3 over Mn-Ce/ASC catalyst in low-temperature flue gas[J]. Chemical Engineering Research and Design, 2018, 133: 1-10. |
83 | SU Z H, REN S, CHEN Z C, et al. Deactivation effect of CaO on Mn-Ce/AC catalyst for SCR of NO with NH3 at low temperature[J]. Catalysts, 2020, 10(8): 873. |
84 | ZHOU G Y, ZHONG B C, WANG W H, et al. In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts[J]. Catalysis Today, 2011, 175(1): 157-163. |
85 | SHI Q, DING L, LONG H M, et al. Study of catalytic combustion of dioxins on Ce-V-Ti catalysts modified by graphene oxide in simulating iron ore sintering flue gas[J]. Materials, 2019, 13(1): 125. |
86 | 施琦. 面向烧结烟气二𫫇英减排的铈基催化剂基础研究[D]. 马鞍山: 安徽工业大学, 2020. |
SHI Qi. Fundamental research on ceria based catalysts for catalytic combustion of dioxins from iron ore sintering flue gas[D]. Ma’anshan, China: Anhui University of Technology, 2020. | |
87 | DENG W, DAI Q G, LAO Y J, et al. Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2016, 181: 848-861. |
88 | WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnO x -CeO2 mixed oxide catalysts[J]. Catalysis Communications, 2008, 9(13): 2158-2162. |
89 | ZUO S F, DING M L, TONG J, et al. Study on the preparation and characterization of a titanium-pillared clay-supported CrCe catalyst and its application to the degradation of a low concentration of chlorobenzene[J]. Applied Clay Science, 2015, 105/106: 118-123. |
90 | KAN J W, DENG L, LI B, et al. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A: General, 2017, 530: 21-29. |
91 | HUANG H, GU Y F, ZHAO J, et al. Catalytic combustion of chlorobenzene over VO x /CeO2 catalysts[J]. Journal of Catalysis, 2015, 326: 54-68. |
92 | HE C, YU Y K, SHEN Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnO x -CeO2 catalysts for chlorobenzene destruction[J]. Applied Surface Science, 2014, 297: 59-69. |
93 | DAI Y, WANG X Y, LI D, et al. Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 132-139. |
[1] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[2] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[3] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[4] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[5] | YANG Xigang, CHEN Guoqing, HUANG Linbin, GU Shijun, LI Changsong, ZHANG Yong, JIN Baosheng. Industrial experiment on the effect of SNCR using urea as the reducing agent on the operation of large capacity power station pulverized coal boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3573-3581. |
[6] | YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. |
[7] | HAN Delin, LI Dan, WANG Tiantian, ZHANG Hai, ZHANG Yang, WANG Suilin. Emission characteristics of swirl premixed combustion stabilized using a displacing bluff body [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2915-2923. |
[8] | WANG Xinyu, HUANG Yaji, XU Ligang, LI Zhiyuan, LI Si, LIU Xiaodong. Numerical simulation on regulating secondary air in same layer to alleviate high temperature corrosion of dual tangential boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2292-2300. |
[9] | XU Ming, SHAO Mingfei, LIU Qingya, DUAN Xue. Hydrogen generation from electrochemical water splitting coupling carbonate reduction [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. |
[10] | HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. |
[11] | TIAN Yuanyu, QIAO Yingyun, ZHANG Yongning. Construction of green emission reduction system under the constraint of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1078-1084. |
[12] | YAN Guochun, WEN Liang, ZHANG Hua. Analysis of development path of modern coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6201-6212. |
[13] | YANG Jingrui, WANG Ying, CHEN Hu, LYU Yongkang. Effects of O2 concentration on adjusting NO x oxidation ratio cooperated with CABR system denitration performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6139-6148. |
[14] | SUN Zhiwei, WU Lianying, HU Yangdong, ZHANG Weitao. Application status of renewable energy in chemical production and its utilities system [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5297-5305. |
[15] | SONG Zhengyuan, SUN Guogang, ZU Zehui, WANG Zhongyuan. Design and analysis of FCC desulfurized wet flue gas plume elimination, purification and heat recovery system coupling with heat pump [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6934-6940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |