1 |
解读《废旧轮胎综合利用行业规范条件》[J]. 中国信息化, 2020(6): 20-21.
|
|
Interpretation of “Standard conditions for comprehensive utilization of waste tires”[J]. China’s informationization, 2020(6): 20-21.
|
2 |
曹婷雨, 黄烨, 左明波, 等. “黑色污染”及其防治对策探析[J]. 环保科技, 2020, 26(3): 61-64.
|
|
CAO Tingyu, HUANG Ye, ZUO Mingbo, et al. Analysis on “black pollution” and its control countermeasures[J]. Environmental Protection and Technology, 2020, 26(3): 61-64.
|
3 |
强金凤, 黎广, 李涛, 等. 废旧橡胶回收再利用方法概述[J]. 橡胶科技, 2020, 18(12): 675-677.
|
|
QIANG Jinfeng, LI Guang, LI Tao, et al. Overview of recycling methods of waste rubber[J]. Rubber Science and Technology, 2020, 18(12): 675-677.
|
4 |
邱敬贤, 何曦, 戴欣, 等. 废旧轮胎处理技术的研究进展[J]. 中国环保产业, 2020(12): 18-22.
|
|
QIU Jingxian, HE Xi, DAI Xin, et al. Research progress on waste tire treatment technologies[J]. China Environmental Protection Industry, 2020(12): 18-22.
|
5 |
王俊芝. 废轮胎与机油共裂解实验研究[D]. 青岛: 青岛理工大学, 2018.
|
|
WANG Junzhi. Experimental study on copyrolysis of waste tires and engine oils[D]. Qingdao: Qingdao Tehcnology University, 2018.
|
6 |
康永. 废橡胶热裂解技术现状及发展方向[J]. 橡塑技术与装备, 2021, 47(1): 30-37.
|
|
KANG Yong. Current status and development direction of waste rubber pyrolysis technology[J]. China Rubber/Plastics Technology and Equipment, 2021, 47(1): 30-37.
|
7 |
葛晓冬. 超临界水氧化法处理废旧轮胎的实验研究[D]. 大连: 大连理工大学, 2005.
|
|
GE Xiaodong. An experimental study on the treatment of wast tire by supercritical water oxidation[D]. Dalian: Dalian University of Technology, 2005.
|
8 |
WANG C, LI D, ZHAI T Y, et al. Direct conversion of waste tires into three-dimensional graphene[J]. Energy Storage Materials, 2019, 23: 499-507.
|
9 |
LEUNG D Y C, WANG C L. Kinetic study of scrap tyre pyrolysis and combustion[J]. Journal of Analytical and Applied Pyrolysis, 1998, 45(2): 153-169.
|
10 |
MASTRAL A M, MURILLO R, CALLÉN M S, et al. Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor[J]. Energy & Fuels, 2000, 14(4): 739-744.
|
11 |
PARTHASARATHY P, CHOI H S, PARK H C, et al. Influence of process conditions on product yield of waste tyre pyrolysis: a review[J]. Korean Journal of Chemical Engineering, 2016, 33(8): 2268-2286.
|
12 |
王梦雅. 废轮胎胎面和胎侧热解碳特性探究[D]. 大连: 大连理工大学, 2018.
|
|
WANG Mengya. Characterization of pyrolysis chars prepared from waste tire tread and side wall[D]. Dalian: Dalian University of Technology, 2018.
|
13 |
蒋智慧, 刘洋, 宋永猛, 等. 废旧轮胎热解及热解产物研究展望[J]. 化工进展, 2021, 40(1): 515-525.
|
|
JIANG Zhihui, LIU Yang, SONG Yongmeng, et al. Review of pyrolysis for waste tires and research prospects of pyrolysis products[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 515-525.
|
14 |
BOCKSTAL L, BERCHEM T, SCHMETZ Q, et al. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review[J]. Journal of Cleaner Production, 2019, 236: 117574.
|
15 |
OBOIRIEN B O, NORTH B C. A review of waste tyre gasification[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5169-5178.
|
16 |
ZHANG X H, WANG T J, MA L L, et al. Vacuum pyrolysis of waste tires with basic additives[J]. Waste Management, 2008, 28(11): 2301-2310.
|
17 |
KAMINSKY W, MENNERICH C, ZHANG Z E. Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 334-337.
|
18 |
HU H Y, FANG Y, LIU H, et al. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014, 97: 102-107.
|
19 |
BENALLAL B, ROY C, PAKDEL H, et al. Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha[J]. Fuel, 1995, 74(11): 1589-1594.
|
20 |
YAZDANI E, HASHEMABADI S H, TAGHIZADEH A. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature[J]. Waste Management, 2019, 85: 195-201.
|
21 |
AYANOĞLU A, YUMRUTAŞ R. Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis[J]. Energy, 2016, 103: 456-468.
|
22 |
严建华, 高雅丽, 张志霄, 等. 废轮胎回转窑中试热解油的理化性质[J]. 燃料化学学报, 2003, 31(6): 589-594.
|
|
YAN Jianhua, GAO Yali, ZHANG Zhixiao, et al. Characteristics of pyrolytic oil derived from pilot-scale pyrolysis of scrap tires[J]. Journal of Fuel Chemistry and Technology, 2003, 31(6): 589-594.
|
23 |
CUNLIFFE A M, WILLIAMS P T. Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires[J]. Energy & Fuels, 1999, 13(1): 166-175.
|
24 |
LUONG D X, BETS K V, ALGOZEEB W A, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651.
|
25 |
ADVINCULA P A, LUONG D X, CHEN W Y, et al. Flash graphene from rubber waste[J]. Carbon, 2021, 178: 649-656.
|
26 |
刘民凯. 电磁感应加热轮胎热解碳化装置: CN209584119U[P]. 2019-11-05.
|
|
LIU Minkai. Electromagnetic induction heating tire pyrolysis carbonization device: CN209584119U[P]. 2019-11-05.
|
27 |
ROY C, DARMSTADT H, BENALLAL B, et al. Characterization of naphtha and carbon black obtained by vacuum pyrolysis of polyisoprene rubber[J]. Fuel Processing Technology, 1997, 50(1): 87-103.
|
28 |
WILLIAMS P T. Pyrolysis of waste tyres: a review[J]. Waste Management, 2013, 33(8): 1714-1728.
|
29 |
LI S Q, YAO Q, CHI Y, et al. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5133-5145.
|
30 |
MOLINER C, MARCHELLI F, BOSIO B, et al. Modelling of spouted and spout-fluid beds: key for their successful scale up[J]. Energies, 2017, 10(11): 1729.
|
31 |
LOPEZ G, ALVAREZ J, AMUTIO M, et al. Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor[J]. Energy Conversion and Management, 2017, 142: 523-532.
|
32 |
ARABIOURRUTIA M, LOPEZ G, ARTETXE M, et al. Waste tyre valorization by catalytic pyrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 129: 109932.
|
33 |
THOMAS C L. Chemistry of cracking catalysts[J]. Industrial & Engineering Chemistry, 1949, 41(11): 2564-2573.
|
34 |
HONG Z, FOGASH K B, WATWE R M, et al. Experimental and DFT studies of initiation processes for butane isomerization over sulfated-zirconia catalysts[J]. Journal of Catalysis, 1998, 178(2): 489-498.
|
35 |
MARCZEWSKI M. Mechanism of n-alkane transformations over a solid superacid of Lewis character, Al2O3/AlCl3 [J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986, 82(6): 1687.
|
36 |
CORMA A. Formation of products responsible for motor and research octane of gasolines produced by cracking: the implication of framework Si/Al ratio and operation variables[J]. Journal of Catalysis, 1989, 115(2): 551-566.
|
37 |
CORMA A, MENGUAL J, MIGUEL P J. Catalytic cracking of n-alkane naphtha: the impact of olefin addition and active sites differentiation[J]. Journal of Catalysis, 2015, 330: 520-532.
|
38 |
贺方, 谢朝钢. ZRP分子筛改性对催化热裂解乙烯产率影响的机理研究[J]. 石油炼制与化工, 2003, 34(12): 12-16.
|
|
HE Fang, XIE Chaogang. Mechanism of the effect of metal modified zeolites on ethylene yield in CPP technology[J]. Petroleum Processing and Petrochemicals, 2003, 34(12): 12-16.
|
39 |
LI W, HUANG C F, LI D P, et al. Derived oil production by catalytic pyrolysis of scrap tires[J]. Chinese Journal of Catalysis, 2016, 37(4): 526-532.
|
40 |
SADEGHPOUR P, HAGHIGHI M. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion[J]. Advanced Powder Technology, 2018, 29(5): 1175-1188.
|
41 |
XIA W, WANG F F, MU X C, et al. Catalytic performance of H-ZSM-5 zeolites for conversion of ethanol or ethylene to propylene: effect of reaction pressure and SiO2/Al2O3 ratio[J]. Catalysis Communications, 2017, 91: 62-66.
|
42 |
SONG W, JUSTICE R E, JONES C A, et al. Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5[J]. Langmuir, 2004, 20(19): 8301-8306.
|
43 |
ARABIOURRUTIA M, OLAZAR M, AGUADO R, et al. HZSM-5 and HY zeolite catalyst performance in the pyrolysis of tires in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7600-7609.
|
44 |
梁筱敏. Y型分子筛改性的研究[D]. 上海: 华东师范大学, 2015.
|
|
LIANG Xiaomin. A study on the modification of zeolite Y[D]. Shanghai: East China Normal University, 2015.
|
45 |
OLAZAR M, ARABIOURRUTIA M, LÓPEZ G, et al. Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 199-204.
|
46 |
沈伯雄, 吴春飞, 史展亮, 等. 废旧轮胎催化热解油品分析[J]. 化工进展, 2007, 26(1): 82-85.
|
|
SHEN Boxiong, WU Chunfei, SHI Zhanliang, et al. Analysis of oil from waste tyre pyrolysis[J]. Chemical Industry and Engineering Progress, 2007, 26(1): 82-85.
|
47 |
WANG J, JIANG J C, WANG X B, et al. Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: comparison of different catalysts[J]. Fuel, 2020, 278: 118322.
|
48 |
DŨNG N A, WONGKASEMJIT S, JITKARNKA S. Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tire-derived oil[J]. Applied Catalysis B: Environmental, 2009, 91(1/2): 300-307.
|
49 |
MUENPOL S, JITKARNKA S. Impact of zeolite channel structure on structure of hydrocarbon compounds and petrochemicals in waste tyre-derived oils[J]. Chemical Engineering Transactions, 2014, 39: 685-690.
|
50 |
YUWAPORNPANIT R, JITKARNKA S. Cu-doped catalysts and their impacts on tire-derived oil and sulfur removal[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 200-208.
|
51 |
HAN Y, YU J, CHEN T, et al. Study on catalytic pyrolysis mechanism of natural rubber (NR) over Zn-modified ZSM5 catalysts[J]. Journal of the Energy Institute, 2021, 94: 210-221.
|
52 |
MUENPOL S, JITKARNKA S. Effects of Fe supported on zeolites on structures of hydrocarbon compounds and petrochemicals in waste tire-derived pyrolysis oils[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 147-156.
|
53 |
NAMCHOT W, JITKARNKA S. Impacts of nickel supported on different zeolites on waste tire-derived oil and formation of some petrochemicals[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 86-97.
|
54 |
DŨNG N A, KLAEWKLA R, WONGKASEMJIT S, et al. Light olefins and light oil production from catalytic pyrolysis of waste tire[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 281-286.
|
55 |
DŨNG N A, TANGLUMLERT W, WONGKASEMJIT S, et al. Roles of ruthenium on catalytic pyrolysis of waste tire and the changes of its activity upon the rate of calcination[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 256-262.
|
56 |
YU J, LIU S, CARDOSO A, et al. Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu[J]. Energy, 2019, 188: 116117.
|
57 |
MUHAMMAD R, ALI Y, MESSADDEQ Y, et al. Conditions optimization and physiochemical analysis of oil obtained by catalytic pyrolysis of scrap tube rubber using MgO as catalyst[J]. Catalysts, 2021, 11(3): 357.
|
58 |
KORDOGHLI S, PARASCHIV M, KUNCSER R, et al. Catalysts’ influence on thermochemical decomposition of waste tires[J]. Environmental Progress & Sustainable Energy, 2017, 36(5): 1560-1567.
|
59 |
KORDOGHLI S, PARASCHIV M, KHIARI B, et al. Using oxides of alkaline-earth metals as catalysts in used tyres pyrolysis[J]. International Journal of ChemTech Research, 2016, 9(8): 359-365.
|
60 |
KORDOGHLI S, KHIARI B, PARASCHIV M, et al. Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor[J]. Waste Management, 2017, 67: 288-297.
|
61 |
ZANDI-ATASHBAR N, ENSAFI A A, AHOOR A H. Magnetic Fe2CuO4/rGO nanocomposite as an efficient recyclable catalyst to convert discard tire into diesel fuel and as an effective mercury adsorbent from wastewater[J]. Journal of Cleaner Production, 2018, 172: 68-80.
|
62 |
张兴华, 常杰, 王铁军, 等. 真空条件下金属氧化物催化废轮胎热解研究[J]. 能源工程, 2006(1): 41-45.
|
|
ZHANG Xinghua, CHANG Jie, WANG Tiejun, et al. A study on metal-oxide catalyzed pyrolysis of waste tires under vacuum conditions[J]. Energy Engineering, 2006(1): 41-45.
|
63 |
WANG J, ZHONG Z P, DING K, et al. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5[J]. Energy, 2017, 133: 90-98.
|
64 |
OSORIO-VARGAS P, LICK I D, SOBREVÍA F, et al. Thermal behavior, reaction pathways and kinetic implications of using a Ni/SiO2 catalyst for waste tire pyrolysis[J]. Waste and Biomass Valorization, 2021, 12(12): 6465-6479.
|
65 |
刘翔宇. 固定床渣油加氢催化剂失活原因及对策分析[J]. 云南化工, 2018, 45(2): 37.
|
|
LIU Xiangyu. Analysis on causes and countermeasures of deactivation of fixed bed residue hydrogenation catalyst[J]. Yunnan Chemical Technology, 2018, 45(2): 37.
|
66 |
CHRISTOU S Y, GARCÍA-RODRÍGUEZ S, FIERRO J L G, et al. Deactivation of Pd/Ce0.5Zr0.5O2 model three-way catalyst by P, Ca and Zn deposition[J]. Applied Catalysis B: Environmental, 2012, 111/112: 233-245.
|
67 |
GIANNAKEAS N, LEA-LANGTON A, DUPONT V, et al. Hydrogen from scrap tyre oil via steam reforming and chemical looping in a packed bed reactor[J]. Applied Catalysis B: Environmental, 2012, 126: 249-257.
|
68 |
ZEAITER J, AHMAD M N, ROONEY D, et al. Design of an automated solar concentrator for the pyrolysis of scrap rubber[J]. Energy Conversion and Management, 2015, 101: 118-125.
|
69 |
SHAH J, JAN M R, MABOOD F. Recovery of value-added products from the catalytic pyrolysis of waste tyre[J]. Energy Conversion and Management, 2009, 50(4): 991-994.
|
70 |
SHAH J, JAN M R, MABOOD F. Catalytic conversion of waste tyres into valuable hydrocarbons[J]. Journal of Polymers and the Environment, 2007, 15(3): 207-211.
|
71 |
RASUL JAN M, JABEEN F, SHAH J, et al. Thermal catalytic conversion of the used isobutyl isoprene rubber into valuable hydrocarbons[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 303-308.
|
72 |
SHEN B X, WU C F, GUO B B, et al. Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 2007, 73(1/2): 150-157.
|
73 |
DING K, ZHONG Z P, ZHANG B, et al. Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry[J]. Energy & Fuels, 2015, 29(5): 3181-3187.
|
74 |
MKHIZE N M, VAN DER GRYP P, DANON B, et al. Effect of temperature and heating rate on limonene production from waste tyre pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 314-320.
|
75 |
WANG H, HU H Y, YANG Y H, et al. Effect of high heating rates on products distribution and sulfur transformation during the pyrolysis of waste tires[J]. Waste Management, 2020, 118: 9-17.
|
76 |
张兴华, 常杰, 王铁军, 等. 碱性条件下废轮胎真空热裂解研究[J]. 燃料化学学报, 2005, 33(6): 713-716.
|
|
ZHANG Xinghua, CHANG Jie, WANG Tiejun, et al. Vacuum pyrolysis of waste tires with basic additives[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 713-716.
|
77 |
HOANG A T, NGUYEN T H, NGUYEN H P. Scrap tire pyrolysis as a potential strategy for waste management pathway: a review[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2020: 1-18.
|
78 |
董根全, 杨建丽, 刘振宇. 废轮胎热解油品的组成与硫含量研究[J]. 燃料化学学报, 2000, 28(6): 537-541.
|
|
DONG Genquan, YANG Jianli, LIU Zhenyu. Composition and sulfur content of oil derived from tire pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2000, 28(6): 537-541.
|
79 |
ATTAR A. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions: a review[J]. Fuel, 1978, 57(4): 201-212.
|
80 |
TALEB D A, HAMID H A, DERIS R R R, et al. Insights into pyrolysis of waste tire in fixed bed reactor: thermal behavior[J]. Materials Today: Proceedings, 2020, 31: 178-186.
|
81 |
BETANCUR M, MARTÍNEZ J D, MURILLO R. Production of activated carbon by waste tire thermochemical degradation with CO2 [J]. Journal of Hazardous Materials, 2009, 168(2/3): 882-887.
|
82 |
BEAUMONT O, SCHWOB Y. Influence of physical and chemical parameters on wood pyrolysis[J]. Industrial & Engineering Chemistry Process Design and Development, 1984, 23(4): 637-641.
|
83 |
DAI X W, YIN X L, WU C Z, et al. Pyrolysis of waste tires in a circulating fluidized-bed reactor[J]. Energy, 2001, 26(4): 385-399.
|
84 |
WILLIAMS P T, BRINDLE A J. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst: tyre ratio and catalyst temperature[J]. Waste Management & Research, 2002, 20(6): 546-555.
|
85 |
SHEN B X, WU C F, LIANG C, et al. Pyrolysis of waste tyres: the influence of USY catalyst/tyre ratio on products[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 243-249.
|
86 |
潘洋. 固定床反应器催化剂装填方案的优化[J]. 中外能源, 2007, 12(6): 76-79.
|
|
PAN Yang. Optimization for catalyst loading for fixed bed reactors[J]. Sino-Global Energy, 2007, 12(6): 76-79.
|
87 |
CAMPUZANO F, BROWN R C, MARTÍNEZ J D. Auger reactors for pyrolysis of biomass and wastes[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 372-409.
|
88 |
LI Y P, LI B S, ZHANG X H, et al. Continuous pyrolysis and catalytic upgrading of corncob hydrolysis residue in the combined system of auger reactor and downstream fixed-bed reactor[J]. Energy Conversion and Management, 2016, 122: 1-9.
|
89 |
KHALIL U, VONGSVIVUT J, SHAHABUDDIN M, et al. A study on the performance of coke resistive cerium modified zeolite Y catalyst for the pyrolysis of scrap tyres in a two-stage fixed bed reactor[J]. Waste Management, 2020, 102: 139-148.
|