Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3890-3899.DOI: 10.16085/j.issn.1000-6613.2021-1775
• Resources and environmental engineering • Previous Articles Next Articles
WANG Chaochao1(), WU Yiling1, CHEN Jiaqiao1, CAI Tianning1, LIU Wenru1,2,3, LI Xiang1,2,3, WU Peng1,2,3()
Received:
2021-08-18
Revised:
2021-11-02
Online:
2022-07-23
Published:
2022-07-25
Contact:
WU Peng
王超超1(), 吴翼伶1, 陈嘉巧1, 蔡天宁1, 刘文如1,2,3, 李祥1,2,3, 吴鹏1,2,3()
通讯作者:
吴鹏
作者简介:
王超超(1995—),男,硕士研究生,研究方向为污水处理与回用。E-mail: 基金资助:
CLC Number:
WANG Chaochao, WU Yiling, CHEN Jiaqiao, CAI Tianning, LIU Wenru, LI Xiang, WU Peng. A novel anaerobic hydrolysis acidification-partial denitrification anaerobic ammonia oxidation process for advanced nitrogen removal from simulated domestic and nitrate-containing wastewater[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3890-3899.
王超超, 吴翼伶, 陈嘉巧, 蔡天宁, 刘文如, 李祥, 吴鹏. 新型厌氧水解酸化-短程反硝化厌氧氨氧化工艺同步处理生活污水和含硝酸盐模拟废水[J]. 化工进展, 2022, 41(7): 3890-3899.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1775
运行特征 | NH4+-N/mg·L-1 | COD/mg·L-1 | NO3--N/mg·L-1 | Q1/Q2 | 生活污水分段 进水比(a∶b) | AnHA 反应器HRT/h | PD/A 反应器HRT/h |
---|---|---|---|---|---|---|---|
阶段Ⅰ-1(1~30天) | 50 | 260 | 50 | 1.0 | 10∶0 | 0 | 6 |
阶段Ⅰ-2(31~62天) | 50 | 260 | 60 | 1.2 | 10∶0 | 0 | 6 |
阶段Ⅱ-1(63~90天) | 50 | 260 | 60 | 1.2 | 5∶5 | 4.5 | 6 |
阶段Ⅱ-2(91~132天) | 50 | 260 | 60 | 1.2 | 3∶7 | 3.2 | 6 |
阶段Ⅱ-3(133~170天) | 50 | 260 | 60 | 1.2 | 1∶9 | 2.5 | 6 |
运行特征 | NH4+-N/mg·L-1 | COD/mg·L-1 | NO3--N/mg·L-1 | Q1/Q2 | 生活污水分段 进水比(a∶b) | AnHA 反应器HRT/h | PD/A 反应器HRT/h |
---|---|---|---|---|---|---|---|
阶段Ⅰ-1(1~30天) | 50 | 260 | 50 | 1.0 | 10∶0 | 0 | 6 |
阶段Ⅰ-2(31~62天) | 50 | 260 | 60 | 1.2 | 10∶0 | 0 | 6 |
阶段Ⅱ-1(63~90天) | 50 | 260 | 60 | 1.2 | 5∶5 | 4.5 | 6 |
阶段Ⅱ-2(91~132天) | 50 | 260 | 60 | 1.2 | 3∶7 | 3.2 | 6 |
阶段Ⅱ-3(133~170天) | 50 | 260 | 60 | 1.2 | 1∶9 | 2.5 | 6 |
模拟生活污水 | 含硝酸盐模拟废水 | |||
---|---|---|---|---|
COD/mg·L-1 | NH4+-N/mg·L-1 | NO2--N/mg·L-1 | NO3--N/mg·L-1 | |
260 | 50 | 0~0.3 | 50~60 |
模拟生活污水 | 含硝酸盐模拟废水 | |||
---|---|---|---|---|
COD/mg·L-1 | NH4+-N/mg·L-1 | NO2--N/mg·L-1 | NO3--N/mg·L-1 | |
260 | 50 | 0~0.3 | 50~60 |
1 | CHEN R, JI J Y, CHEN Y J, et al. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater[J]. Water Research, 2019, 155: 288-299. |
2 | ZHANG M, WANG S Y, JI B, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment, 2019, 692: 393-401. |
3 | DU R, CAO S B, LI X C, et al. Efficient partial-denitrification/anammox (PD/A) process through gas-mixing strategy: system evaluation and microbial analysis[J]. Bioresource Technology, 2020, 300: 122675. |
4 | LI J L, LI J W, PENG Y Z, et al. Insight into the impacts of organics on anammox and their potential linking to system performance of sewage partial nitrification-anammox (PN/A): a critical review[J]. Bioresource Technology, 2020, 300: 122655. |
5 | DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: opportunities of extending application for anammox[J]. Environment International, 2019, 131: 105001. |
6 | 张星星, 张钰, 王超超, 等. 短程反硝化耦合厌氧氨氧化工艺及其应用前景研究进展[J]. 化工进展, 2020, 39(5): 1981-1991. |
ZHANG Xingxing, ZHANG Yu, WANG Chaochao, et al. Research advances in application prospect of partial denitrification coupled with anammox: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1981-1991. | |
7 | CAO S B, WANG S Y, PENG Y Z, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: the effect of seeding sludge[J]. Bioresource Technology, 2013, 149: 570-574. |
8 | CAO S B, PENG Y Z, DU R, et al. Feasibility of enhancing the DEnitrifying AMmonium OXidation (DEAMOX) process for nitrogen removal by seeding partial denitrification sludge[J]. Chemosphere, 2016, 148: 403-407. |
9 | DE KREUK M K, KISHIDA N, TSUNEDA S, et al. Behavior of polymeric substrates in an aerobic granular sludge system[J]. Water Research, 2010, 44(20): 5929-5938. |
10 | CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal, 2019, 362: 107-115. |
11 | DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-Anammox: a method for high nitrate wastewater treatment[J]. Environment International, 2019, 126: 707-716. |
12 | MA S J, MA H J, HU H D, et al. Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: characteristics of dissolved organic matter and the key microorganisms[J]. Water Research, 2019, 148: 359-367. |
13 | LUO J Y, FENG L Y, CHEN Y G, et al. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms[J]. Water Research, 2015, 73: 332-341. |
14 | SHI L L, DU R, PENG Y Z, et al. Successful establishment of partial denitrification by introducing hydrolytic acidification of slowly biodegradable organic matter[J]. Bioresource Technology, 2020, 315: 123887. |
15 | WANG D, WANG G W, YANG F L, et al. Treatment of municipal sewage with low carbon-to-nitrogen ratio via a novel integrated process[J]. Chemical Engineering Journal, 2018, 341: 58-64. |
16 | TANG C C, TIAN Y, HE Z W, et al. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater[J]. Bioresource Technology, 2018, 265: 422-431. |
17 | JI J, PENG Y, WANG B, et al. Synergistic partial-denitrification, anammox, and in situ fermentation (SPDAF) process for advanced nitrogen removal from domestic and nitrate-containing wastewater[J]. Environmental Science & Technology, 2020, 54(6): 3702-3713. |
18 | DU R, PENG Y Z, CAO S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 2011-2021. |
19 | MA B, QIAN W, YUAN C, et al. Achieving mainstream nitrogen removal through coupling anammox with denitratation[J]. Environmental Science & Technology, 2017, 51(15): 8405-8413. |
20 | HAN Y, QIAN J Z, GUO J B, et al. Feasibility of partial denitrification and anammox for removing nitrate and ammonia simultaneously in situ through synergetic interactions[J]. Bioresource Technology, 2021, 320: 124390. |
21 | CUI B, YANG Q, LIU X H, et al. Achieving partial denitrification-anammox in biofilter for advanced wastewater treatment[J]. Environment International, 2020, 138: 105612. |
22 | KAMPAS P, PARSONS S A, PEARCE P, et al. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal[J]. Water Research, 2007, 41(8): 1734-1742. |
23 | XU X C, MA S Q, JIANG H B, et al. Start-up of the anaerobic hydrolysis acidification (ANHA)-simultaneous partial nitrification, anammox and denitrification (SNAD)/enhanced biological phosphorus removal (EBPR) process for simultaneous nitrogen and phosphorus removal for domestic sewage treatment[J]. Chemosphere, 2021, 275: 130094. |
24 | 王维奇, 王秀杰, 李军, 等. 部分反硝化耦合厌氧氨氧化脱氮性能研究[J]. 中国环境科学, 2019, 39(2): 641-647. |
WANG Weiqi, WANG Xiujie, LI Jun, et al. Study on the performance of partial denitrification coupled with anaerobic ammonia oxidation for nitrogen removal[J]. China Environmental Science, 2019, 39(2): 641-647. | |
25 | 张星星, 王超超, 王垚, 等. 基于不同废污泥源的短程反硝化快速启动及稳定性[J]. 环境科学, 2020, 41(8): 3715-3724. |
ZHANG Xingxing, WANG Chaochao, WANG Yao, et al. Rapid start-up and stability of partial denitrification based on different waste sludge sources[J]. Environmental Science, 2020, 41(8): 3715-3724. | |
26 | DU R, CAO S B, LI B K, et al. Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature[J]. Bioresource Technology, 2019, 274: 386-394. |
27 | LIU X Y, YANG H, FANG X Y, et al. Performance study and population structure analysis of hydrolytic acidification immobilized fillers using municipal wastewater[J]. Process Safety and Environmental Protection, 2021, 146: 126-135. |
28 | YU H Q, FANG H H P. Acidogenesis of dairy wastewater at various pH levels[J]. Water Science and Technology, 2002, 45(10): 201-206. |
29 | WU P, ZHANG X X, WANG Y G, et al. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR + PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters[J]. Bioresource Technology, 2021, 327: 124795. |
30 | QIAN W T, MA B, LI X Y, et al. Long-term effect of pH on denitrification: high pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019, 278: 444-449. |
31 | DU R, CAO S B, ZHANG H Y, et al. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: the influence of loading rates[J]. Journal of Hazardous Materials, 2020, 384: 121273. |
32 | 闫冰, 付嘉棋, 夏嵩, 等. 厌氧氨氧化启动过程细菌群落多样性及PICRUSt2功能预测分析[J]. 环境科学, 2021, 42(8): 3875-3885. . |
YAN B, FU J Q, XIA S, et al. Diversity and PICRUSt2-based predicted functional analysis of bacterial communities during the start-up of Anammox[J]. Environmental Science, 2021, 42(8): 3875-3885. | |
33 | WANG D P, ZHENG Q, HUANG K L, et al. Metagenomic and metatranscriptomic insights into the complex nitrogen metabolic pathways in a single-stage bioreactor coupling partial denitrification with anammox[J]. Chemical Engineering Journal, 2020, 398: 125653. |
[1] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[2] | WANG Dawei, BI Chunmeng, QIN Yongli, JIANG Yongrong, XIE Huabin, MAO Yukun, MIAO Xueyan. Sulfate-reducing activated sludge for immobilization of cadmium in acid mine drainage by mineralization [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5509-5519. |
[3] | ZHU Yihao, ZHAO Baihang, WANG Chun, ZHANG Yuqing, YANG Haishan. Humic acid adsorption removal by modified coal gangue-based zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5531-5537. |
[4] | ZHANG Huixia, ZHOU Lishan, ZHANG Chenglei, QIAN Guanglei, XIE Chenxin, ZHU Lingzhi. Preparation of Bi2S3/TiO2 nanocone photoanode and their photoelectrocatalysis degradation of hygromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5548-5557. |
[5] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[6] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[7] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[8] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[9] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[10] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[11] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[12] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[13] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[14] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
[15] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |