Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2504-2510.DOI: 10.16085/j.issn.1000-6613.2021-0958
• Materials science and technology • Previous Articles Next Articles
LIU Xingyuan1(
), ZHANG Yongfeng1,2(
), XIAO Kai1,2, GAO Jingze1,2
Received:2021-05-06
Revised:2021-07-02
Online:2022-05-24
Published:2022-05-05
Contact:
ZHANG Yongfeng
刘星园1(
), 张永锋1,2(
), 肖凯1,2, 高境泽1,2
通讯作者:
张永锋
作者简介:刘星园(1996—),女,硕士研究生,研究方向为分子筛吸附治理VOCs。E-mail:基金资助:CLC Number:
LIU Xingyuan, ZHANG Yongfeng, XIAO Kai, GAO Jingze. Research progress of molecular sieve materials in the adsorption of VOCs[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2504-2510.
刘星园, 张永锋, 肖凯, 高境泽. 分子筛材料在VOCs吸附中的研究进展[J]. 化工进展, 2022, 41(5): 2504-2510.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0958
| 来源 | 占比/% |
|---|---|
| 工业源 | 47 |
| 移动源 | 24 |
| 生活源 | 29 |
| 来源 | 占比/% |
|---|---|
| 工业源 | 47 |
| 移动源 | 24 |
| 生活源 | 29 |
| 制备方法 | 优点 | 缺点 |
|---|---|---|
| 水热合成法 | 发展相对成熟 | 高成本、有污染、不安全、能耗高 |
| 固相合成法 | 成本低、降低污染 | 条件复杂、有待发展 |
| 微波辅助法 | 缩短晶化时间、受热均匀,效率高、能耗低 | 产率有待提高、晶化 过程不易控制 |
| 晶种导入法 | 替代有机模板剂,降低污染 | 成本高、不利于工业化 |
| 制备方法 | 优点 | 缺点 |
|---|---|---|
| 水热合成法 | 发展相对成熟 | 高成本、有污染、不安全、能耗高 |
| 固相合成法 | 成本低、降低污染 | 条件复杂、有待发展 |
| 微波辅助法 | 缩短晶化时间、受热均匀,效率高、能耗低 | 产率有待提高、晶化 过程不易控制 |
| 晶种导入法 | 替代有机模板剂,降低污染 | 成本高、不利于工业化 |
| 1 | 江梅, 邹兰, 李晓倩, 等. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36(9): 3522-3532. |
| JIANG Mei, ZOU Lan, LI Xiaoqian, et al. Definition and control indicators of volatile organic compounds in China[J]. Environmental Science, 2015, 36(9): 3522-3532. | |
| 2 | 钱薇, 张浩哲, 陈超宇, 等. 活性炭和分子筛吸附VOCs的研究进展[J]. 化工生产与技术, 2019, 25(3): 19-23. |
| QIAN Wei, ZHANG Haozhe, CHEN Chaoyu, et al. Research on adsorptionof VOCs by activated carbonand molecular sieves[J]. Chemical Production and Technology, 2019, 25(3): 19-23. | |
| 3 | 薛梦婷, 李勇. VOCs在分子筛上吸附性能的研究进展[J]. 无机盐工业, 2019, 51(5): 12-16. |
| XUE Mengting, LI Yong. Research progress on adsorption properties of volatile organic compounds on molecular sieves[J]. Inorganic Chemicals Industry, 2019, 51(5): 12-16. | |
| 4 | ZHANG X M, XUE Z G, LI H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Sciences, 2017, 55: 69-75. |
| 5 | 王慧, 潘志嵛, 陈佳卉, 等. 挥发性有机物治理技术的研究进展[J]. 节能, 2019, 38(6): 90-91. |
| WANG Hui, PAN Zhiyu, CHEN Jiahui, et al. Research progress of volatile organic matter treatment technology[J]. Energy Conservation, 2019, 38(6): 90-91. | |
| 6 | KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs) — A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
| 7 | 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960. |
| XI Jinying, WU Junliang, HU Hongying, et al. Application status of industrial VOCs gas treatment techniques[J]. China Environmental Science, 2012, 32(11): 1955-1960. | |
| 8 | 李智, 王建英, 王勇, 等. NaY沸石分子筛在VOCs处理中的应用[J]. 环境工程学报, 2020, 14(8): 2211-2221. |
| LI Zhi, WANG Jianying, WANG Yong, et al. Application of NaY zeolite molecular sieve in VOCs treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2211-2221. | |
| 9 | 刘帅, 张亚妮, 薛明, 等. 挥发性有机物(VOCs)吸附材料的研究进展[J]. 环境工程, 2021,39(6): 79-89. |
| LIU Shuai, ZHANG Yani, XUE Ming, et al. Research progress on adsorption materials for volatile organic compounds (VOCs)[J]. Environmental Engineering, 2021, 39(6): 79-89. | |
| 10 | 岳旭, 王胜, 高杨, 等. VOCs在吸附剂上吸附性能的热力学研究[J]. 燃料化学学报, 2020, 48(6): 752-760. |
| YUE Xu, WANG Sheng, GAO Yang, et al. Thermodynamics analysis on the adsorption behaviors of VOCs on various adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 752-760. | |
| 11 | 王旭, 吴玉帅, 杨欣, 等. 沸石分子筛用于VOCs吸附脱除的应用研究进展[J]. 化工进展, 2021, 40(5): 2813-2826. |
| WANG Xu, WU Yushuai, YANG Xin, et al. Review of adsorptive removal of volatile organic compounds by zeolite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826. | |
| 12 | HWANG Y K, CHANG J S, PARK S E, et al. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications[J]. Angewandte Chemie International Edition, 2005, 44(4): 556-560. |
| 13 | 单志超. 沸石分子筛的形貌控制与催化吸附功能的研究[D]. 长春: 吉林大学, 2011. |
| SHAN Zhichao. The morphology control of zeolites and their catalytic, adsorptive function studies[D]. Changchun: Jilin University, 2011. | |
| 14 | 岳旭, 王胜, 刘旭, 等. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报, 2020, 48(1): 120-128. |
| YUE Xu, WANG Sheng, LIU Xu, et al. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 120-128. | |
| 15 | 刘强, 卢文新, 刘佳, 等. 分子筛材料在VOCs治理中的应用研究进展[J]. 化肥设计, 2020, 58(3): 5-8. |
| LIU Qiang, LU Wenxin, LIU Jia, et al. Research progress of molecular sieve materials application in VOCs treatment[J]. Chemical Fertilizer Design, 2020, 58(3): 5-8. | |
| 16 | 苏炜, 韩娜, 陈政利, 等. Hβ分子筛改性及其催化苯和氯化苄反应性能[J]. 石油学报(石油加工), 2020, 36(1): 38-44. |
| SU Wei, HAN Na, CHEN Zhengli, et al. Modification of Hβ molecular sieve and its catalytic performance in benzylation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 38-44. | |
| 17 | LIU Y S, LI Z Y, YANG X, et al. Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: adsorption capacity, rate and regenerability[J]. RSC Advances, 2016, 6(25): 21193-21203. |
| 18 | ZHU L, SHI X C, SONG L J, et al. Mesoporous silica (KIT-6) derivatized with hydroxyquinoline functionalities as a selective adsorbent of uranium(Ⅵ)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(2): 381-392. |
| 19 | 刘倩, 杜昭, 张美然. 分子筛吸附VOCs与微波脱附性能研究[J]. 河北科技大学学报, 2020, 41(2): 164-171. |
| LIU Qian, DU Zhao, ZHANG Meiran. Study on adsorption properties of zeolites for VOCs and microwave desorption[J]. Journal of Hebei University of Science and Technology, 2020, 41(2): 164-171. | |
| 20 | LUO X L, PEI F, WANG W, et al. Microwave synthesis of hierarchical porous materials with various structures by controllable desilication and recrystallization[J]. Microporous and Mesoporous Materials, 2018, 262: 148-153. |
| 21 | DAI J Q, ZHAO C, HU X M, et al. One-pot synthesis of meso-microporous ZSM-5 and its excellent performance in VOCs adsorption/desorption[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(1): 78-87. |
| 22 | FENG A H, YU Y, MI L, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent[J]. Microporous and Mesoporous Materials, 2019, 280: 211-218. |
| 23 | FENG A H, YU Y, MI L, et al. Structural, textural and toluene adsorption properties of NH4HF2 and alkali modified USY zeolite[J]. Microporous and Mesoporous Materials, 2019, 290: 109646. |
| 24 | LI R N, CHONG S J, ALTAF N, et al. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds[J]. Frontiers in Chemistry, 2019, 7: 505. |
| 25 | LI R N, XUE T S, LI Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. |
| 26 | BAL’ZHINIMAEV B S, PAUKSHTIS E A, TOKTAREV A V, et al. Effect of water on toluene adsorption over high silica zeolites[J]. Microporous and Mesoporous Materials, 2019, 277: 70-77. |
| 27 | 洪新, 李云赫, 高畅, 等. 不同硅铝比ZSM-5的合成及其吸附脱除柴油中苯胺和吡啶的性能[J]. 燃料化学学报, 2018, 46(10): 1184-1192. |
| HONG Xin, LI Yunhe, GAO Chang, et al. Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1184-1192. | |
| 28 | 李梦瑶. HZSM-5分子筛用于间甲酚和对甲酚吸附分离的研究[D]. 太原: 太原理工大学, 2019. |
| LI Mengyao. Study on adsorption separation of m-cresol and p-cresol with HZSM-5 molecular sieve[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
| 29 | 吴琼, 栾志强, 戴荣继, 等. 用蒙特卡罗模拟方法研究环氧乙烷在HZSM-5分子筛上的吸附行为[J]. 北京理工大学学报, 2018, 38(3): 325-330. |
| WU Qiong, LUAN Zhiqiang, DAI Rongji, et al. Monte Carlo simulation for the adsorption behavior of ethylene oxide on HZSM-5 zeolite[J]. Transactions of Beijing Institute of Technology, 2018, 38(3): 325-330. | |
| 30 | YIN T, MENG X, JIN L P, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305: 110327. |
| 31 | LIU S, PENG Y, CHEN J J, et al. Engineering surface functional groups on mesoporous silica: towards a humidity-resistant hydrophobic adsorbent[J]. Journal of Materials Chemistry A, 2018, 6(28): 13769-13777. |
| 32 | EGAN P J, MULLIN M. Recent improvement and projected worsening of weather in the United States[J]. Nature, 2016, 532(7599): 357-360. |
| 33 | LIU S, PENG Y, YAN T, et al. Modified silica adsorbents for toluene adsorption under dry and humid conditions: impacts of pore size and surface chemistry[J]. Langmuir, 2019, 35(27): 8927-8934. |
| 34 | WANG S, BAI P, WEI Y Z, et al. Three-dimensional-printed core-shell structured MFI-type zeolite monoliths for volatile organic compound capture under humid conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38955-38963. |
| 35 | 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. |
| ZHANG Yuanyuan, WANG Lili, HE Li, et al. Modification of zeolite and adsorption of toluene under high humidity condition[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5509-5514. | |
| 36 | 刘才林, 李承龙, 杨海君, 等. 纯硅分子筛的合成及其硅烷化改性研究[J]. 化工新型材料, 2014, 42(9): 132-134. |
| LIU Cailin, LI Chenglong, YANG Haijun, et al. Study on the synthesis and silanization modification of pure-silica molecular sieve[J]. New Chemical Materials, 2014, 42(9): 132-134. | |
| 37 | 陈艳红, 于庆君, 许孝玲. 分子筛材料的合成及应用[M]. 北京: 石油工业出版社, 2018. |
| CHEN Yanhong, YU Qingjun, XU Xiaoling. Synthesis and application of molecular sieve materials[M]. Beijing: Petroleum Industry Press, 2018. | |
| 38 | VEERAPANDIAN S K P, DE GEYTER N, GIRAUDON J M, et al. The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: a review[J]. Catalysts, 2019, 9(1): 98. |
| 39 | HYLA A S, FANG H J, BOULFELFEL S E, et al. Significant temperature dependence of the isosteric heats of adsorption of gases in zeolites demonstrated by experiments and molecular simulations[J]. The Journal of Physical Chemistry C, 2019, 123(33): 20405-20412. |
| 40 | JIANG N, SHANG R, HEIJMAN S G J, et al. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review[J]. Water Research, 2018, 144: 145-161. |
| 41 | KIM J J, LIM S J, AHN H, et al. Adsorption equilibria and kinetics of propane and propylene on zeolite 13X pellets[J]. Microporous and Mesoporous Materials, 2019, 274: 286-298. |
| 42 | 袁世阳. 金属掺杂ZSM-5分子筛制备及脱硫性能研究[D]. 开封: 河南大学, 2018. |
| YUAN Shiyang. Study on preparation and desulfurization properties of metal doping ZSM-5 zeolite[D]. Kaifeng: Henan University, 2018. | |
| 43 | 崔世强, 闫锋, 张柏慧, 等. 改性ZSM-5对石脑油中有机氯吸附性能[J]. 精细石油化工, 2019, 36(4): 35-40. |
| CUI Shiqiang, YAN Feng, ZHANG Baihui, et al. Study on adsorption of organochlorine in naphtha by modified ZSM-5 zeolite[J]. Speciality Petrochemicals, 2019, 36(4): 35-40. | |
| 44 | LUAN H M, LEI C, MA Y, et al. Alcohol-assisted synthesis of high-silica zeolites in the absence of organic structure-directing agents[J]. Chinese Journal of Catalysis, 2021, 42(4): 563-570. |
| 45 | 刘雷璐. 高硅ZSM-5分子筛的固相研磨法合成及其VOCs吸附性能研究[D]. 广州: 华南理工大学, 2020. |
| LIU Leilu. Solid phase grinding synthesis of high-silica ZSM-5 zeolites and its adsorption properties of VOCs[D]. Guangzhou: South China University of Technology, 2020. | |
| 46 | 赵杉林, 张扬建, 孙桂大, 等. ZSM-5沸石分子筛的微波辐射法合成与表征[J]. 石油学报(石油加工), 1999, 15(3): 89-91. |
| ZHAO Shanlin, ZHANG Yangjan, SUN Guida, et al. Characterization and synthesis of zeolite ZSM - 5 by microwave radiation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1999, 15(3): 89-91. | |
| 47 | 王燕, 王政, 李云峰. ZSM-5型分子筛的微波合成与表征[J]. 承德医学院学报, 2012, 29(4): 406-407. |
| WANG Yan, WANG Zheng, LI Yunfeng. Synthesis and characterization of ZSM-5 zeolite by microwave[J]. Journal of Chengde Medical College, 2012, 29(4): 406-407. | |
| 48 | 王琦旗. 以粉煤灰为铝源纳米级ZSM-5分子筛的合成调控[D]. 大庆: 东北石油大学, 2017. |
| WANG Qiqi. Crystal growth control of nano-ZSM-5 zeolite with Al(OH)3 as aluminum source derived from coal fly ash[D]. Daqing: Northeast Petroleum University, 2017. | |
| 49 | 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. |
| FENG Yongchao, YU Qingjun, YI Honghong, et al. Research progress of MFI-type zeolites in the field of VOCs removal[J]. Materials Reports, 2020, 34(17): 17089-17098. | |
| 50 | 刘双, 卜龙利, 宁珂, 等. 整体式分子筛基催化剂制备及其微波催化燃烧VOCs[J]. 中国环境科学, 2020, 40(11): 4688-4696. |
| LIU Shuang, BO Longli, NING Ke, et al. Preparation and application of monolithic molecular sieve-based catalysts in microwave catalytic combustion of VOCs[J]. China Environmental Science, 2020, 40(11): 4688-4696. | |
| 51 | 周为莉, 叶明华, 余锋进, 等. 有机废气处理技术研究进展[J]. 能源工程, 2018(5): 55-61. |
| ZHOU Weili, YE Minghua, YU Fengjin, et al. Research progress of organic waste gas treatment technologies[J]. Energy Engineering, 2018(5): 55-61. | |
| 52 | 许伟, 刘军利, 孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展, 2016, 35(4): 1223-1229. |
| XU Wei, LIU Junli, SUN Kang. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1223-1229. | |
| 53 | 孙振海, 李滨, 郭春垒, 等. 介孔氧化硅分子筛吸附性能研究进展 [J]. 化工新型材料, 2022(3): 271-276. |
| SUN Zhenhai, LI Bin, GUO Chunlei, et al. Research progress on adsorption properties of mesoporous silica molecular sieves [J].New Chemical Materials, 2022(3): 271-276. | |
| 54 | 冷星月, 胡彩虹, 王炜月, 等. 低浓度挥发性有机物吸附浓缩材料的研究进展[J]. 化工进展, 2020, 39(S2): 336-345. |
| LENG Xingyue, HU Caihong, WANG Weiyue, et al. Recent advance in low concentration volatile organic compounds adsorption and concentration materials[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 336-345. | |
| 55 | 任超, 高君安, 潘利鹏, 等. 典型挥发性有机物在疏水Y分子筛上的吸/脱附研究[J]. 煤化工, 2020, 48(4): 19-23. |
| REN Chao, GAO Jun’an, PAN Lipeng, et al. Study on adsorption/desorption of typical volatile organic compounds on hydrophobic Y zeolites[J]. Coal Chemical Industry, 2020, 48(4): 19-23. |
| [1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
| [2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
| [3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
| [4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
| [5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
| [6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
| [7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
| [8] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
| [9] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
| [10] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
| [11] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
| [12] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
| [13] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
| [14] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
| [15] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |