Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2511-2525.DOI: 10.16085/j.issn.1000-6613.2021-1106
• Materials science and technology • Previous Articles Next Articles
FANG Yufei1(
), DING Donghai1(
), XIAO Guoqing1, FU Pengcheng1, ZHONG Xiaochuan1, ZHU Xianfeng2
Received:2021-05-25
Revised:2021-08-17
Online:2022-05-24
Published:2022-05-05
Contact:
DING Donghai
方宇飞1(
), 丁冬海1(
), 肖国庆1, 付鹏程1, 种小川1, 朱现峰2
通讯作者:
丁冬海
作者简介:方宇飞(1997—),男,硕士研究生,研究方向为结构陶瓷。E-mail:基金资助:CLC Number:
FANG Yufei, DING Donghai, XIAO Guoqing, FU Pengcheng, ZHONG Xiaochuan, ZHU Xianfeng. Progress in academic and application researches on ceramic proppant[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2511-2525.
方宇飞, 丁冬海, 肖国庆, 付鹏程, 种小川, 朱现峰. 陶粒支撑剂的研究及应用进展[J]. 化工进展, 2022, 41(5): 2511-2525.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1106
| 69 | TIAN Yuming, ZHU Baoshun, LI Guomin, et al. Influence of coal gangue amount on properties of ceramic proppants[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 365-369. |
| 70 | 翟冠杰, 陈杰, 娄永国. 高掺量粉煤灰烧结陶粒的试制[J]. 粉煤灰, 2008, 20(1): 42-43. |
| ZHAI Guanjie, CHEN Jie, LOU Yongguo. Development of sintered ceamisite with high volume fly ash[J]. Coal Ash China, 2008, 20(1): 42-43. | |
| 71 | 贾旭楠. 支撑剂的研究现状及展望[J]. 石油化工应用, 2017, 36(9): 1-6. |
| JIA Xunan. Overview of the proppant development and prospect[J]. Petrochemical Industry Application, 2017, 36(9): 1-6. | |
| 72 | 汪婧. 树脂覆膜的支撑剂的专利发展情况[J]. 广东化工, 2015, 42(12): 126-127. |
| WANG Jing. Patents technical review of resin coated proppants[J]. Guangdong Chemical Industry, 2015, 42(12): 126-127. | |
| 73 | 李小刚, 廖梓佳, 杨兆中, 等. 表面改性技术在压裂支撑剂领域的应用[J]. 硅酸盐通报, 2018, 37(9): 2841-2844. |
| LI Xiaogang, LIAO Zijia, YANG Zhaozhong, et al. Research on surface modified fracturing proppants[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2841-2844. | |
| 74 | ZOVEIDAVIANPOOR M, GHARIBI A. Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations: a comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 197-209. |
| 75 | ZHU Z Y, XIANG K L, ZHAO Y Z, et al. Research on a coated method for ceramic proppant[J]. Materials Science Forum, 2016, 847: 527-531. |
| 76 | 程倩倩, 李娜, 张琳羚, 等. 新型覆膜支撑剂研究进展[J]. 热固性树脂, 2020, 35(6): 66-70. |
| 1 | QUEIPO N V, VERDE A J, CANELÓN J, et al. Efficient global optimization for hydraulic fracturing treatment design[J]. Journal of Petroleum Science and Engineering, 2002, 35(3/4): 151-166. |
| 2 | DAVIES R J, MATHIAS S A, MOSS J, et al. Hydraulic fractures: how far can they go?[J]. Marine and Petroleum Geology, 2012, 37(1): 1-6. |
| 3 | REINICKE A, RYBACKI E, STANCHITS S, et al. Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone-proppant systems[J]. Geochemistry, 2010, 70: 107-117. |
| 4 | AL-MUNTASHERI G A. A critical review of hydraulic-fracturing fluids for moderate to ultralow-permeability formations over the last decade[J]. SPE Production Operations, 2014, 29(4): 243-260 |
| 5 | 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. |
| ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. | |
| 6 | 邹才能, 杨智, 张国生, 等. 常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1): 14-25. |
| ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14-25. | |
| 7 | 张雪芬, 陆现彩, 张林晔, 等. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604. |
| ZHANG Xuefen, LU Xiancai, ZHANG Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010, 25(6): 597-604. | |
| 8 | LIANG F, SAYED M, AL-MUNTASHERI G A, et al. A comprehensive review on proppant technologies[J]. Petroleum, 2016, 2(1): 26-39. |
| 9 | HELLMANN J R, SCHEETZ B E, LUSCHER W G, et al. Proppants for shale gas and oil recovery: engineering ceramics for stimulation of unconventional energy resources[J]. American Ceramic Society Bulletin, 2014, 93(1): 28-35. |
| 10 | LUTYŃSKI M, JANUS D, ZIMNY M. Comparison of selected properties of natural and ceramic proppants used in hydraulic fracturing technologies[J]. Inzynieria Mineralna, 2015, 2015(2): 299-303. |
| 11 | KULKARNI M C, OCHOA O O. Mechanics of light weight proppants: a discrete approach[J]. Composites Science and Technology, 2012, 72(8): 879-885. |
| 12 | 杨双春, 佟双鱼, 李东胜, 等. 低密度支撑剂研究进展[J]. 化工进展, 2019, 38(9): 4264-4274. |
| YANG Shuangchun, TONG Shuangyu, LI Dongsheng, et al. Advances in low-density proppant research[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4264-4274. | |
| 13 | REN Y H, REN Q, WU X L, et al. Mechanism of low temperature sintered high-strength ferric-rich ceramics using bauxite tailings[J]. Materials Chemistry and Physics, 2019, 238: 121929. |
| 14 | JI H P, FANG M H, HUANG Z H, et al. Effect of La2O3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and γ-Al2O3 [J]. Ceramics International, 2013, 39(6): 6841-6846. |
| 15 | ZHANG Y Y, XU L, SEETHARAMAN S, et al. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization[J]. Materials and Structures, 2015, 48(9): 2779-2793. |
| 16 | MA S H, WEN Z G, CHEN J N, et al. An environmentally friendly design for low-grade diasporic-bauxite processing[J]. Minerals Engineering, 2009, 22(9/10): 793-798. |
| 17 | 曾凡辉, 郭建春, 刘恒, 等. 北美页岩气高效压裂经验及对中国的启示[J]. 西南石油大学学报(自然科学版), 2013, 35(6): 90-98. |
| ZENG Fanhui, GUO Jianchun, LIU Heng, et al. Experience of efficient fracturing of shale gas in North America and enlightenment to China[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6): 90-98. | |
| 18 | 吴振东, 叶建东. 添加剂对氧化铝陶瓷的烧结和显微结构的影响[J]. 兵器材料科学与工程, 2002, 25(1): 68-72. |
| WU Zhendong, YE Jiandong. Effects of additives on sintering behavior and microstructure of Al2O3 [J]. Ordnance Material Science and Engineering, 2002, 25(1): 68-72. | |
| 19 | 郭子娴, 陈前林, 喻芳芳. 高强度低密度陶粒支撑剂的研究[J]. 中国陶瓷, 2013, 49(3): 44-47. |
| GUO Zixian, CHEN Qianlin, YU Fangfang. Research on high-strength light-weight ceramic proppant[J]. China Ceramics, 2013, 49(3): 44-47. | |
| 20 | 中国石化集团胜利石油管理局. 压裂支撑剂性能指标及测试方法: Q/ [S]. 2013. |
| Sinopec Shengli Oilfield Administration. Fracturing proppant performance indicators and measurements: Q/ [S]. 2013. | |
| 21 | 赵金洲, 彭瑀, 李勇明, 等. 高排量反常砂堵现象及对策分析[J]. 天然气工业, 2013, 33(4): 56-60. |
| ZHAO Jinzhou, PENG Yu, LI Yongming, et al. Abnormal sand plug phenomenon at a high injection rate and relevant solutions[J]. Natural Gas Industry, 2013, 33(4): 56-60. | |
| 22 | 光新军, 王敏生, 韩福伟, 等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液, 2019, 36(5): 529-533, 541. |
| 76 | CHENG Qianqian, LI Na, ZHANG Linling, et al. Research progress of new coated proppants[J]. Thermosetting Resin, 2020, 35(6): 66-70. |
| 77 | SHINBACH M P, CULLER S R, THURBER E L, et al. Low density proppant particles and use thereof: US7845409[P]. 2010-12-07. |
| 22 | GUANG Xinjun, WANG Minsheng, HAN Fuwei, et al. Proppants for fracturing fluids: new progress made and direction of future development[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 529-533, 541. |
| 23 | 曲占庆, 曹彦超, 郭天魁, 等. 一种超低密度支撑剂的可用性评价[J]. 石油钻采工艺, 2016, 38(3): 372-377. |
| QU Zhanqing, CAO Yanchao, GUO Tiankui, et al. Evaluation on applicability of an ultra-low-density proppant[J]. Oil Drilling & Production Technology, 2016, 38(3): 372-377. | |
| 24 | 张伟民, 李宗田, 李庆松, 等. 高强度低密度树脂覆膜陶粒研究[J]. 油田化学, 2013, 30(2): 189-192, 220. |
| ZHANG Weimin, LI Zongtian, LI Qingsong, et al. Study on high strength and low density resin coated ceramic proppants[J]. Oilfield Chemistry, 2013, 30(2): 189-192, 220. | |
| 25 | 李小刚, 杨兆中, 梁知, 等. 深埋煤层气藏水力压裂增产技术探讨[J]. 天然气与石油, 2011, 29(6): 46-48. |
| LI Xiaogang, YANG Zhaozhong, LIANG Zhi, et al. Discussion on hydraulic fracturing for deep buried CBM[J]. Natural Gas and Oil, 2011, 29(6): 46-48. | |
| 26 | 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. |
| HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. | |
| 27 | COULTER G R, WELLS R D. The advantages of high proppant concentration in fracture stimulation[J]. Journal of Petroleum Technology, 1972, 24(6): 643-650. |
| 28 | 梁天成, 才博, 蒙传幼, 等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田, 2021, 28(3): 403-407. |
| LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 403-407. | |
| 29 | 俞绍诚. 陶粒支撑剂和兰州压裂砂长期裂缝导流能力的评价[J]. 石油钻采工艺, 1987, 9(5): 93-100. |
| YU Shaocheng. Evaluation of long-term fracture conductivity of ceramic proppant and Lanzhou fracturing sand[J]. Oil Drilling & Production Technology, 1987, 9(5): 93-100. | |
| 78 | 谢晓康, 牛三鑫, 张涛, 等. 以ZnO作添加剂覆膜陶粒支撑剂的制备与性能研究[J]. 应用化工, 2020, 49(5): 1179-1182. |
| XIE Xiaokang, NIU Sanxin, ZHANG Tao, et al. Preparation and properties of ceramic proppant with ZnO as additive[J]. Applied Chemical Industry, 2020, 49(5): 1179-1182. | |
| 79 | 范承贵, 解发生, 马建民. 树脂涂层砂在压裂上的应用[J]. 石油钻采工艺, 1989, 11(3): 93-98. |
| FAN Chenggui, XIE Fasheng, MA Jianmin. Application of resin coated sand in fracturing[J]. Oil Drilling & Production Technology, 1989, 11(3): 93-98. | |
| 80 | 郭宗艳, 姚晓, 马雪. 多孔莫来石基低密度高强度支撑剂的制备及性能[J]. 石油钻探技术, 2013, 41(2): 39-43. |
| GUO Zongyan, YAO Xiao, MA Xue. Preparation and properties of porous mullite base low-density high-strength proppants[J]. Petroleum Drilling Techniques, 2013, 41(2): 39-43. | |
| 81 | 海书杰. 油页岩渣制备石油支撑剂的研究[D]. 武汉: 中国地质大学, 2010. |
| Shujie HAI. Preparation of petroleum proppant from oil-shale-dreg[D]. Wuhan: China University of Geosciences, 2010. | |
| 82 | 谭晓华, 丁磊, 胥伟冲, 等. 覆膜支撑剂导气阻水效果可视化试验研究[J]. 石油钻探技术, 2021, 49(3): 117-123. |
| TAN Xiaohua, DING Lei, XU Weichong, et al. Research on visualization experiment of the gas conduction and water blocking effects of coated proppants[J]. Petroleum Drilling Techniques, 2021, 49(3): 117-123. | |
| 83 | AZEEZ A A, RHEE K Y, PARK S J, et al. Epoxy clay nanocomposites-processing, properties and applications: a review[J]. Composites Part B: Engineering, 2013, 45(1): 308-320. |
| 84 | BHATTACHARYA M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016, 9(4): 262. |
| 85 | KAUSAR A. Advances in polymer/fullerene nanocomposite: a review on essential features and applications[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 594-605. |
| 86 | LEE D, SONG S H, HWANG J, et al. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes[J]. Small, 2013, 9(15): 2602-2610. |
| 87 | 辛军, 郭建春, 赵金洲, 等. 控制支撑剂回流技术新进展[J]. 断块油气田, 2008, 15(5): 99-102. |
| XIN Jun, GUO Jianchun ZHAO Jinzhou, et al. New progress in technology of controlling proppant flowback[J]. Fault-Block Oil & Gas Field, 2008, 15(5): 99-102. | |
| 88 | CHEN X D, LI T H, REN Q, et al. Fabrication and morphology control of high strength lightweight mullite whisker network[J]. Journal of Alloys and Compounds, 2017, 729: 285-292. |
| 89 | KONG X C, TIAN Y M, CHAI Y S, et al. Effects of pyrolusite additive on the microstructure and mechanical strength of corundum-mullite ceramics[J]. Ceramics International, 2015, 41(3): 4294-4300. |
| 90 | MOLISANI A L, GOLDENSTEIN H, YOSHIMURA H N. The role of CaO additive on sintering of aluminum nitride ceramics[J]. Ceramics International, 2017, 43(18): 16972-16979. |
| 91 | 赵隽, 王文奇. 消除二次莫来石的关键仍在预烧[J]. 景德镇陶瓷, 1989(1): 22-25. |
| ZHAO Jun, WANG Wenqi. The key to eliminate secondary mullite is still presintering [J]. Jingdezhen’s Ceramics, 1989(1): 22-25. | |
| 92 | 马雪, 姚晓, 华苏东, 等. MnO2和Fe2O3对氧化铝质压裂支撑剂微观结构和抗破碎能力的影响[J].硅酸盐学报, 2009(2): 280-284. |
| MA Xue, YAO Xiao, HUA Sudong, et al. Effects of MnO2 and Fe2O3 on microstructure and crush resistance of alumina matrix fracturing proppant[J]. Journal of the Chinese Ceramic Society, 2009, 37(2): 280-284. | |
| 93 | KIM J M, KIM H S. Processing and properties of a glass-ceramic from coal fly ash from a thermal power plant through an economic process[J]. Journal of the European Ceramic Society, 2004, 24(9): 2825-2833. |
| 94 | TARTAJ J, MESSING G L. Effect of the addition of α-Fe2O3 on the microstructural development of boehmite-derived alumina[J]. Journal of Materials Science Letters, 1997, 16(2): 168-170. |
| 95 | TZING W H, TUAN W H. Exaggerated grain growth in Fe-doped Al2O3 [J]. Journal of Materials Science Letters, 1999, 18(14): 1115-1117. |
| 96 | ILIĆ S, ZEC S, MILJKOVIĆ M, et al. Sol-gel synthesis and characterization of iron doped mullite[J]. Journal of Alloys and Compounds, 2014, 612: 259-264. |
| 97 | HAN S C, YOON D Y, BRUN M K. Migration of grain boundaries in alumina induced by chromia addition[J]. Acta Metallurgica et Materialia, 1995, 43(3): 977-984. |
| 98 | HIRATA T, AKIYAMA K, YAMAMOTO H. Sintering behavior of Cr2O3-Al2O3 ceramics[J]. Journal of the European Ceramic Society, 2000, 20(2): 195-199. |
| 99 | PARTYKA J J. Wear resistance of crystals of corundum doped with Cr2O3, TiO2, and CoO[J]. Journal of the European Ceramic Society, 1997, 17(13): 1597-1612. |
| 100 | 高峰, 吴尧鹏, 刘军, 等. 铬铁矿掺杂对压裂支撑剂结构与性能的影响[J]. 无机材料学报, 2013, 28(9): 1019-1024. |
| GAO Feng, WU Yaopeng, LIU Jun, et al. Effects of chromite additive on the microstructure and performance of bauxite-based fracturing proppant[J]. Journal of Inorganic Materials, 2013, 28(9): 1019-1024. | |
| 101 | WU T T, ZHOU J, WU B L. Effect of TiO2 content on the acid resistance of a ceramic proppant[J]. Corrosion Science, 2015, 98: 716-724. |
| 102 | 李凤友, 刘玉瑛, 张玲, 等. TiO2烧结助剂对纳米η-Al2O3制备氧化铝陶瓷的影响[J]. 人工晶体学报, 2019, 48(4): 699-704. |
| LI Fengyou, LIU Yuying, ZHANG Ling, et al. Effect of TiO2 sintering additives on alumina ceramic prepared with nano-η-Al2O3 [J]. Journal of Synthetic Crystals, 2019, 48(4): 699-704. | |
| 103 | LI J H, MA H W, HUANG W H. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1535-1539. |
| 104 | 陈耀斌, 岳俊磊, 武晓宇, 等. V2O5掺杂对莫来石晶须增强型陶粒支撑剂的性能影响[J]. 硅酸盐通报, 2017, 36(7): 2343-2347, 2353. |
| CHEN Yaobin, YUE Junlei, WU Xiaoyu, et al. Effects of V2O5 doping on the properties of ceramic proppant reinforced by mullite whiskers[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2343-2347, 2353. | |
| 30 | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
| ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
| 31 | LIU Z L, ZHAO J Z, LI Y M, et al. Low-temperature sintering of bauxite-based fracturing proppants containing CaO and MnO2 additives[J]. Materials Letters, 2016, 171: 300-303. |
| 32 | ZHAO J Z, LIU Z L, LI Y M. Preparation and characterization of low-density mullite-based ceramic proppant by a dynamic sintering method[J]. Materials Letters, 2015, 152: 72-75. |
| 33 | 马俊伟, 吴国亮, 张建强. 铝土矿废石制备超低密度陶粒支撑剂的试验研究[J]. 矿产保护与利用, 2019, 39(3): 151-154, 159. |
| MA Junwei, WU Guoliang, ZHANG Jianqiang. Experimental research on preparation of ultra-low-density ceramsite proppant with bauxite waste rock[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 151-154, 159. | |
| 34 | 马海强, 田玉明, 马晓霞, 等. 烧结温度对添加固废陶粒制备支撑剂性能影响[J]. 太原科技大学学报, 2018, 39(1): 31-35. |
| MA Haiqiang, TIAN Yuming, MA Xiaoxia, et al. Effects of sintering temperature on the properties of proppant synthesized by adding waste ceramic sands[J]. Journal of Taiyuan University of Science and Technology, 2018, 39(1): 31-35. | |
| 35 | 岳俊磊, 陈耀斌, 武晓宇, 等. 超低密压裂支撑剂的制备及性能研究[J]. 硅酸盐通报, 2017, 36(7): 2237-2242. |
| YUE Junlei, CHEN Yaobin, WU Xiaoyu, et al. Preparation and properties of ultra-light weight fracturing proppants[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2237-2242. | |
| 36 | 贾勤长, 朱现峰. 一种高强度低密度陶粒支撑剂及其制备方法: CN202010299091.9[P]. 2020-09-03. |
| JIA Q C, ZHU X F. A high strength and low density ceramic proppant and its preparation method: CN202010299091.9[P]. 2020-09-03. | |
| 37 | MOCCIARO A, LOMBARDI M B, SCIAN A N. Effect of raw material milling on ceramic proppants properties[J]. Applied Clay Science, 2018, 153: 90-94. |
| 38 | 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: [S]. 北京: 石油工业出版社, 2015. |
| National Energy Administration. Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations: [S]. Beijing: Petroleum Industry Press, 2015. | |
| 39 | 刘挺, 王菊侠, 曹义平, 等. 添加铁粉制备低密度中强度陶粒支撑剂及性能研究[J]. 陶瓷, 2017(1): 30-34. |
| LIU Ting, WANG Juxia, CAO Yiping, et al. Preparation and mechanisms of light-weight middle-strength ceramisite proppant by iron powder additive[J]. Ceramics, 2017(1): 30-34. | |
| 40 | HAO J Y, MA H Q, FENG X, et al. Low-temperature sintering of ceramic proppants by adding solid wastes[J]. International Journal of Applied Ceramic Technology, 2018, 15(2): 563-568. |
| 41 | 吕宝强, 刘顺, 毕卫宇, 等. 低密度陶粒支撑剂的制备工艺研究[J]. 铸造技术, 2012, 33(7): 771-773. |
| Baoqiang LYU, LIU Shun, BI Weiyu, et al. Study on preparation process for low density ceramisite proppant[J]. Foundry Technology, 2012, 33(7): 771-773. | |
| 42 | MA H Q, TIAN Y M, ZHOU Y, et al. Effective reduction of sintering temperature and breakage ratio for a low-cost ceramic proppant by feldspar addition[J]. International Journal of Applied Ceramic Technology, 2018, 15(1): 191-196. |
| 43 | 刘爱平, 田玉明, 孔祥辰, 等. 烧结温度对莫来石/石英质经济型陶粒支撑剂性能的影响[J]. 中国陶瓷, 2015, 51(2): 61-64. |
| LIU Aiping, TIAN Yuming, KONG Xiangchen, et al. The effect of sintering temperature on mullite/quartz economical ceramic proppant[J]. China Ceramics, 2015, 51(2): 61-64. | |
| 44 | 力国民, 常鑫, 朱保顺, 等. 烧结温度对添加复合助剂制备莫来石-刚玉基陶粒支撑剂性能的影响[J]. 人工晶体学报, 2018, 47(9): 1850-1854. |
| LI Guomin, CHANG Xin, ZHU Baoshun, et al. Influence of sintering temperature on performance of mullite-corundum proppant prepared by adding compound additive[J]. Journal of Synthetic Crystals, 2018, 47(9): 1850-1854. | |
| 45 | 刘作磊. 高强度低品位铝矾土基压裂支撑剂制备方法及机理研究[D]. 成都: 西南石油大学, 2016. |
| LIU Zuolei. Preparation methods and mechanisms of high-strength low-grade bauxite based fracturing proppants[D]. Chengdu: Southwest Petroleum University, 2016. | |
| 46 | 赵紫石, 崔李鹏, 赵旭, 等. 利用固废煤矸石制备陶粒支撑剂的研究[J]. 山西煤炭, 2019, 39(1): 1-4. |
| ZHAO Zishi, CUI Lipeng, ZHAO Xu, et al. Preparation of ceramic proppant using solid waste coal gangue[J]. Shanxi Coal, 2019, 39(1): 1-4. | |
| 47 | 何成, 杨永超, 曹建伟, 等. 粉煤灰陶粒石油压裂支撑剂的制备与表征[J]. 陶瓷学报, 2021, 42(1): 116-121. |
| HE Cheng, YANG Yongchao, CAO Jianwei, et al. Preparation and characterization of fly ash ceramsite petroleum fracturing proppant[J]. Journal of Ceramics, 2021, 42(1): 116-121. | |
| 48 | 赵爽, 刘挺, 王超. 添加陶粒砂废料对制备支撑剂的影响[J]. 中国陶瓷工业, 2017, 24(2): 45-48. |
| ZHAO Shuang, LIU Ting, WANG Chao. Effect of ceramsite tailing doping on preparation of proppant material[J]. China Ceramic Industry, 2017, 24(2): 45-48. | |
| 49 | 李灿然, 李向辉, 遆永周, 等. 压裂支撑剂研究进展及发展趋势[J]. 陶瓷学报, 2016, 37(6): 603-607. |
| LI Canran, LI Xianghui, Yongzhou TI, et al. The development progress and trends of fracturing proppant[J]. Journal of Ceramics, 2016, 37(6): 603-607. | |
| 50 | REN Q, REN Y H, LI H H, et al. Preparation and characterization of high silicon ceramic proppants using low grade bauxite and fly ash[J]. Materials Chemistry and Physics, 2019, 230: 355-361. |
| 51 | WU X L, HUO Z Z, REN Q, et al. Preparation and characterization of ceramic proppants with low density and high strength using fly ash[J]. Journal of Alloys and Compounds, 2017, 702: 442-448. |
| 52 | HAO J Y, MA H Q, FENG X, et al. Microstructure and fracture mechanism of low density ceramic proppants[J]. Materials Letters, 2018, 213: 92-94. |
| 53 | 李丹丹. JG公司陶粒支撑剂项目可行性研究[D]. 济南: 齐鲁工业大学, 2017. |
| LI Dandan. Feasibility study of ceramic proppants project in JG company[D]. Jinan: Qilu University of Technology, 2017. | |
| 54 | 杜杰, 唐一博, 王俊峰, 等. 煤层压裂支撑剂的制备及性能研究[J]. 煤矿安全, 2018, 49(10): 5-8, 12. |
| DU Jie, TANG Yibo, WANG Junfeng, et al. Preparation and mechanisms of proppant for coal bed fracturing[J]. Safety in Coal Mines, 2018, 49(10): 5-8, 12. | |
| 55 | TIAN X R, WU B L, LI J. The exploration of making acidproof fracturing proppants using red mud[J]. Journal of Hazardous Materials, 2008, 160(2/3): 589-593. |
| 56 | 王晋槐, 赵友谊, 龚红宇, 等. 石油压裂陶粒支撑剂研究进展[J]. 硅酸盐通报, 2010, 29(3): 633-636. |
| WANG Jinhuai, ZHAO Youyi, GONG Hongyu, et al. Advance of ceramic proppants for oil hydraulic fracture[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(3): 633-636. | |
| 57 | 张龙. 支撑剂烧结废料综合回收利用研究[J]. 四川冶金, 2008, 30(2): 54-56. |
| ZHANG Long. Research to the compositive recycling of clinkery waste of propping agent[J]. Sichuan Metallurgy, 2008, 30(2): 54-56. | |
| 58 | 张巍, 孙杰, 戴文勇. 红柱石加入量对焦宝石基浇注料性能的影响[J]. 矿冶工程, 2011, 31(4): 18-20, 24. |
| ZHANG Wei, SUN Jie, DAI Wenyong. Effects of andalusite addition on properties of calcined flint clay based castable refractory[J]. Mining and Metallurgical Engineering, 2011, 31(4): 18-20, 24. | |
| 59 | 刘建博. 焦宝石制备轻质隔热耐火材料的微孔化设计及性能[D]. 武汉: 武汉科技大学, 2018. |
| LIU Jianbo. Microporous design and property of lightweight insulation refractory materials prepared from calcined flint clay[D]. Wuhan: Wuhan University of Science and Technology, 2018. | |
| 60 | 冯伟乐, 田玉明, 白频波, 等. 利用焦宝石和钾长石制备低密高强陶粒支撑剂的研究[J]. 人工晶体学报, 2016, 45(1): 128-132. |
| FENG Weile, TIAN Yuming, BAI Pinbo, et al. Preparation of low-density and high-strength ceramic proppant by using flint clay and K-feldspar[J]. Journal of Synthetic Crystals, 2016, 45(1): 128-132. | |
| 61 | 王晋槐. 利用焦宝石和煤矸石制备低密度陶粒支撑剂的研究[D]. 济南: 山东大学, 2016. |
| WANG Jinhuai. Fabrication and research of low-density proppants using lint clay and coal gangue[D]. Jinan: Shandong University, 2016. | |
| 62 | 赵俊, 严春杰, 栾英伟, 等. 含焦宝石的陶瓷支撑剂的制备及性能[J]. 中国粉体技术, 2010, 16(3): 78-81. |
| ZHAO Jun, YAN Chunjie, LUAN Yingwei, et al. Preparation of proppants with flint clay and their properties[J]. China Powder Science and Technology, 2010, 16(3): 78-81. | |
| 63 | 刘洪礼, 柴跃生, 周毅, 等. 紫砂土制备压裂支撑剂的研究[J]. 硅酸盐通报, 2016, 35(1): 97-100. |
| LIU Hongli, CHAI Yuesheng, ZHOU Yi, et al. Preparation of fracturing proppant by purple sands[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 97-100. | |
| 64 | 牟军, 薛屺, 董朋朋, 等. 铝矾土空心陶粒支撑剂的制备及性能研究[J]. 人工晶体学报, 2017, 46(7): 1244-1249. |
| MOU Jun, XUE Qi, DONG Pengpeng, et al. Preparation and performance of the hollow bauxite ceramic proppant[J]. Journal of Synthetic Crystals, 2017, 46(7): 1244-1249. | |
| 65 | 徐永驰. 低密度支撑剂的研制及性能评价[D]. 成都: 西南石油大学, 2016. |
| XU Yongchi. Development and performance evaluation of low density proppant[D]. Chengdu: Southwest Petroleum University, 2016. | |
| 66 | 董朋朋. 低密度压裂支撑剂的制备及性能研究[D]. 成都: 西南石油大学, 2016. |
| DONG Pengpeng. Preparation and properties of low density fracturing proppant[D]. Chengdu: Southwest Petroleum University, 2016. | |
| 67 | 李小刚, 廖梓佳, 杨兆中, 等. 压裂用支撑剂应用现状和研究进展[J]. 硅酸盐通报, 2018, 37(6): 1920-1923. |
| LI Xiaogang, LIAO Zijia, YANG Zhaozhong, et al. Application and development of fracturing proppant[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 1920-1923. | |
| 68 | 萧礼标, 薛群虎, 刘一军, 等. 二次莫来石化反应对陶瓷板性能的影响[J]. 建筑材料学报, 2018, 21(6): 933-938, 955. |
| XIAO Libiao, XUE Qunhu, LIU Yijun, et al. Effect of secondary mullitization reaction on the properties of ceramic plates[J]. Journal of Building Materials, 2018, 21(6): 933-938, 955. | |
| 69 | 田玉明, 朱保顺, 力国民, 等. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报, 2019, 47(3): 365-369. |
| [1] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
| [2] | ZHANG Saihui, LI Xiaoyang, GAO Hui, WANG Lili. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. |
| [3] | LI Yeqing, YANG Xingru, LIANG Zhuo, JIANG Hao, XU Quan, ZHOU Hongjun, FENG Lu. Impact of exogenous additives on hydrothermal dechlorination performance of polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2706-2712. |
| [4] | ZHANG Xuemin, ZHANG Shanling, LI Pengyu, HUANG Tingting, YIN Shaoqi, LI Jinping, WANG Yingmei. Research progress on influencing factors and strengthening mechanism of CO2-CH4 hydrate replacement in porous media system [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5259-5271. |
| [5] | LYU Penggang, LIU Tao, YE Hang, HUANG Xiaoliang, DUAN Hongchang, TAN Zhengguo. Advances in improving the performance of additives for increasing propylene production in FCC process [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 210-220. |
| [6] | SU Weiyi, LIU Xing, HAO Qi, GUO Pan, HAO Hongxun, LI Chunli. Research progress in the effect of additives on the polymorphic crystallization of amino acids in solution [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4463-4472. |
| [7] | PAN Yi, XU Minglei, HOU Bing, GUO Qi, YANG Shuangchun, KANTOMA Daniel Bala. Research progress of temperature-sensitive polymer in oil and gas production [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2109-2119. |
| [8] | SUN Yue, LIU Lingling, LI Xinquan, PAN Jianfeng, LIU Jiabin. Research progress in mechanisms and effects of various additives used for preparing electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5861-5874. |
| [9] | Zhenguo ZHANG, Xitao LIU, Ling LAI, Xiujuan FENG. Progress in degradation of chlorinated organic pollutants by mechanochemical method [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 487-504. |
| [10] | Yangyang MA, Zhaoping ZHONG, Xudong LAI. Enrichment of heavy metals during coal combustion by mineral additives [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2479-2486. |
| [11] | Xueli GENG, Ying MENG, Haifeng CONG, Hong LI, Xin GAO, Xingang LI. Review on the synthesis process and industrialization of polyoxymethylene dimethyl ethers [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4993-5008. |
| [12] | Mengling DAI, Zhigao SUN, Juan LI, Cuimin LI, Haifeng HUANG. Progress on promotion technology for gas storage in hydrates [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3975-3986. |
| [13] | Guo ZHENG,Tongmeng MIAO,Bo WU,Cun ZHOU. Surface modification of high strength and high modulus vinylon fibre and its dispersion performance in cement [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 250-256. |
| [14] | Shuangchun YANG,Shuangyu TONG,Dongsheng LI,Umed KHISAYNOV,Mingzhe GUO,Minglei XU. Advances in low-density proppant research [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4264-4274. |
| [15] | WANG Yantao, LIANG Cai, ZHOU Qun, YANG Xujun, SONG Lian, ZHU Ge, CHEN Xiaoping, ZHAO Changsui. Analysis of catalytic cracking of sludge gasification tar over palygorskite nickel-based catalyst [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3895-3902. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |