Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2526-2536.DOI: 10.16085/j.issn.1000-6613.2021-1241
• Materials science and technology • Previous Articles Next Articles
XIONG Lu1(), SHI Lei1, WANG Wenyu1(), JIN Xin2, NIU Jiarong1, ZHU Zhengtao1,3, LIN Tong1,4
Received:
2021-06-15
Revised:
2021-07-24
Online:
2022-05-24
Published:
2022-05-05
Contact:
WANG Wenyu
熊路1(), 石磊1, 王闻宇1(), 金欣2, 牛家嵘1, 朱正涛1,3, 林童1,4
通讯作者:
王闻宇
作者简介:
熊路(1996—),女,硕士研究生,主要研究方向为单向导水/导油材料。E-mail: 基金资助:
CLC Number:
XIONG Lu, SHI Lei, WANG Wenyu, JIN Xin, NIU Jiarong, ZHU Zhengtao, LIN Tong. Progress in unidirectional water/oil transport porous materials based on design of wettability gradient[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2526-2536.
熊路, 石磊, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 基于润湿性梯度设计的单向导水/油多孔材料研究进展[J]. 化工进展, 2022, 41(5): 2526-2536.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1241
1 | PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. |
2 | LIU M J, WANG S T, WEI Z X, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669. |
3 | JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. |
4 | CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata [J]. Nature, 2016, 532(7597): 85-89. |
5 | ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
6 | JU J, XIAO K, YAO X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Advanced Materials, 2013, 25(41): 5937-5942. |
7 | WHITE B, SARKAR A, KIETZIG A M. Fog-harvesting inspired by the Stenocara beetle—An analysis of drop collection and removal from biomimetic samples with wetting contrast[J]. Applied Surface Science, 2013, 284: 826-836. |
8 | LI K, JU J, XUE Z X, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water[J]. Nature Communications, 2013, 4: 2276. |
9 | MIAO D Y, HUANG Z, WANG X F, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles[J]. Small, 2018, 14(32): 1801527. |
10 | ZHOU H, WANG H X, NIU H T, et al. One-way water-transport cotton fabrics with enhanced cooling effect[J]. Advanced Materials Interfaces, 2016, 3(17): 1600283. |
11 | GUPTA P, KANDASUBRAMANIAN B. Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil-water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19102-19113. |
12 | WANG H X, ZHOU H, NIU H T, et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance[J]. Advanced Materials Interfaces, 2015, 2(4): 1400506. |
13 | DU M, ZHAO Y, TIAN Y, et al. Electrospun multiscale structured membrane for efficient water collection and directional transport[J]. Small, 2016, 12(8): 1000-1005. |
14 | BUCHBERGER G, HISCHEN F, COMANNS P, et al. Bio-inspired microfluidic devices for passive, directional liquid transport: model-based adaption for different materials[J]. Procedia Engineering, 2015, 120: 106-111. |
15 | CAO M Y, LI K, DONG Z C, et al. Superhydrophobic “pump”: continuous and spontaneous antigravity water delivery[J]. Advanced Functional Materials, 2015, 25(26): 4114-4119. |
16 | ZENG C, WANG H X, ZHOU H, et al. Directional water transport fabrics with durable ultra-high one-way transport capacity[J]. Advanced Materials Interfaces, 2016, 3(14): 1600036. |
17 | ZHAO Y, WANG H X, ZHOU H, et al. Directional fluid transport in thin porous materials and its functional applications[J]. Small, 2017, 13(4): 1601070. |
18 | SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748. |
19 | WEN L P, TIAN Y, JIANG L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 2015, 54(11):3387-3399. |
20 | WANG H X, DING J, DAI L M, et al. Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20(37): 7938-7940. |
21 | KONG Y, LIU Y Y, XIN J H. Fabrics with self-adaptive wettability controlled by “light-and-dark”[J]. Journal of Materials Chemistry, 2011, 21(44): 17978-17987. |
22 | ZHU R F, LIU M M, HOU Y Y, et al. Biomimetic fabrication of Janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50113-50125. |
23 | ZHOU H, WANG H X, NIU H T, et al. Superphobicity/philicity Janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Scientific Reports, 2013, 3: 2964. |
24 | WANG H X, ZHOU H, YANG W D, et al. Selective, spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22874-22880. |
25 | FU S D, ZHOU H, WANG H X, et al. Superhydrophilic, underwater directional oil-transport fabrics with a novel oil trapping function[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27402-27409. |
26 | WANG Z C, YANG J L, DAI X D, et al. An integrated Janus porous membrane with controllable under-oil directional water transport and fluid gating property for oil/water emulsion separation[J]. Journal of Membrane Science, 2021, 627: 119229. |
27 | SENTHILKUMAR P, KARTHIK T. Effect of Argon plasma treatment variables on wettability and antibacterial properties of polyester fabrics[J]. Journal of the Institution of Engineers (India): Series E, 2016, 97(1): 19-29. |
28 | WANG C X, REN Y, LYU J C, et al. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction[J]. Applied Surface Science, 2017, 396: 1840-1848. |
29 | TIAN X L, JIN H, SAINIO J, et al. Droplet and fluid gating by biomimetic Janus membranes[J]. Advanced Functional Materials, 2014, 24(38): 6023-6028. |
30 | SUN F X, CHEN Z Q, ZHU L C, et al. Directional trans-planar and different in-plane water transfer properties of composite structured bifacial fabrics modified by a facile three-step plasma treatment[J]. Coatings, 2017, 7(8): 132. |
31 | XU J H, XIN B J, WANG C, et al. Tailoring double-layered fibrous mat of modified polypropylene/cotton fabric for the function of directional moisture transport[J]. Journal of Applied Polymer Science, 2020, 137(47): 49530. |
32 | SEDDON A M, CASEY D, LAW R V, et al. Drug interactions with lipid membranes[J]. Chemical Society Reviews, 2009, 38(9): 2509-2519. |
33 | CHENG Z J, WANG B H, LAI H, et al. Janus copper mesh film with unidirectional water transportation ability toward high efficiency oil/water separation[J]. Chemistry - an Asian Journal, 2017, 12(16): 2085-2092. |
34 | SI Y F, CHEN L W, YANG F C, et al. Stable Janus superhydrophilic/hydrophobic nickel foam for directional water transport[J]. Journal of Colloid and Interface Science, 2018, 509: 346-352. |
35 | YANG X B, WANG Z X, SHAO L. Construction of oil-unidirectional membrane for integrated oil collection with lossless transportation and oil-in-water emulsion purification[J]. Journal of Membrane Science, 2018, 549: 67-74. |
36 | YANG X B, YAN L L, RAN F T, et al. Interface-confined surface engineering constructing water-unidirectional Janus membrane[J]. Journal of Membrane Science, 2019, 576: 9-16. |
37 | WANG Z J, WANG Y, LIU G J. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric[J]. Angewandte Chemie, 2016, 128(4): 1313-1316. |
38 | ZHANG C, HE S, WANG D F, et al. Facile fabricate a bioinspired Janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil-water separation[J]. Journal of Materials Science, 2018, 53(20): 14398-14411. |
39 | XU J H, ZHANG F L, XIN B J, et al. Application of surface wettability modified polypropylene nonwoven in Janus composite fibrous mats for the function of directional water transport[J]. Polymers for Advanced Technologies, 2019, 30(12): 3038-3048. |
40 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
41 | KIM J H, SUNG S J, HWANG D K. Electrospray coating of a TiO2 electrode for dye-sensitized solar cells by a post-treatment method[J]. Applied Mechanics and Materials, 2014, 705: 51-55. |
42 | ISLAM S, JADHAV A, FANG J, et al. Surface deposition of chitosan on wool substrate by electrospraying[J]. Advanced Materials Research, 2011, 331: 165-170. |
43 | LIU H, HUANG J Y, LI F Y, et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning[J]. Cellulose, 2017, 24(2): 1129-1141. |
44 | WANG H J, WANG W Y, WANG H, et al. One-way water transport fabrics based on roughness gradient structure with no low surface energy substances[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32792-32800. |
45 | LI Y R, JIN X, ZHENG Y D, et al. Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46938-46946. |
46 | WANG H X, NIU H T, ZHOU H, et al. Multifunctional directional water transport fabrics with moisture sensing capability[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22878-22884. |
47 | YIN K, YANG S, DONG X R, et al. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles[J]. Applied Physics Letters, 2018, 112(24): 243701. |
48 | JIAO Y L, LI C Z, WU S Z, et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16867-16873. |
49 | YIN K, DU H F, DONG X R, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626. |
50 | YIN K, YANG S, DONG X R, et al. Ultrafast achievement of a superhydrophilic/hydrophobic Janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31433-31440. |
51 | TIAN X L, LI J, WANG X. Anisotropic liquid penetration arising from a cross-sectional wettability gradient[J]. Soft Matter, 2012, 8(9): 2633. |
52 | SHOU D H, FAN J T. Design of nanofibrous and microfibrous channels for fast capillary flow[J]. Langmuir, 2018, 34(4): 1235-1241. |
53 | WU J, WANG N, WANG L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996. |
54 | WU J, ZHOU H, WANG H X, et al. Novel water harvesting fibrous membranes with directional water transport capability[J]. Advanced Materials Interfaces, 2019, 6(5): 1801529. |
55 | DONG Y L, KONG J H, PHUA S L, et al. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push–pull effects for moisture wicking[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14087-14095. |
56 | YAN W A, MIAO D Y, AHMED BABAR A, et al. Multi-scaled interconnected inter- and intra-fiber porous Janus membranes for enhanced directional moisture transport[J]. Journal of Colloid and Interface Science, 2020, 565: 426-435. |
57 | AHMED BABAR A, MIAO D Y, ALI N, et al. Breathable and colorful cellulose acetate-based nanofibrous membranes for directional moisture transport[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22866-22875. |
58 | AHMED BABAR A, ZHAO X L, WANG X F, et al. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport[J]. Journal of Colloid and Interface Science, 2020, 577: 207-216. |
59 | ZHANG Y, LI T T, REN H T, et al. Fabrication of polyacrylonitrile/polyvinyl alcohol-TPU with highly breathable, permeable performances for directional water transport Janus fibrous membranes by sandwich structural design[J]. Journal of Sandwich Structures & Materials, 2021, 23(7): 2817-2831. |
60 | MCCULLOH K A, SPERRY J S, ADLER F R. Water transport in plants obeys Murray’s law[J]. Nature, 2003, 421(6926): 939-942. |
61 | WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous Murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019, 13(2): 1060-1070. |
62 | JIA M, LIU H C, YANG G, et al. Biomimetic porous nanofiber-based oil pump for spontaneous oil directional transport and collection[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16887-16894. |
63 | ZHAO C Q, ZHANG P C, GU Z D, et al. Superspreading-based fabrication of asymmetric porous PAA-g-PVDF membranes for efficient water flow gating[J]. Advanced Materials Interfaces, 2016, 3(20): 1600615. |
[1] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[2] | ZHANG Zhe, LANG Yuanlu, CHEN Jia’nan, WU Qiaoyan, JI Hongwei, LI Xingbo, MA Yan, TAO Liuqian, WANG Jinyue. Analysis of effect of solid surface temperature on phase transition process and surface wetting characteristics of frozen droplets [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4605-4617. |
[3] | SUN Nana, SUN Huina, SHEN Lisha, SU Ruiyu, ZHAO Chao. Synergistic demulsification of magnetic nanoparticle-microwave on heavy oil O/W emulsion [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3127-3137. |
[4] | ZHANG Shizhong, CHEN Zhanxiu, LIU Fengrui, PANG Runyu, WANG Qing. Molecular dynamics simulation of liquid boiling on nanostructured surfaces [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2311-2321. |
[5] | SHAN Linna, YANG Zhensheng, YAN Guofei, LI Chunli, LI Hao, WANG Zhiying. Asymmetric Janus membranes based on hydrophilic modification of dopamine for efficient oil/water separation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6500-6510. |
[6] | WANG Shuai, ZHAO Jinzhu, WANG Rongyuan, CUI Kaixiang, JING Jiaqiang. New ideas of heavy oil flow drag reduction by emulsification and wetting coupling action [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 126-139. |
[7] | YANG Peng, HU Shisong, LIU Guangfei, ZHANG Wei, SUN Dongliang, YU Bo. Enhancement of flow boiling heat transfer by using Ni/Ag micro/nano structures in a top-connected microchannel [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2526-2535. |
[8] | HONG Wenpeng, LAN Jingrui, LI Haoran, CHEN Xiaolong, LI Yan. Solvothermal preparation of copper tetradecanoate superhydrophobic surface and its wettability [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6574-6580. |
[9] | Ziyang LIU, Zhenping QIN, Suping CUI, Mengmeng JIA, Quanfu AN, Naixin WANG, Yan LIU, Hongxia GUO. Effect of wettability of organic solvent nanofiltration membrane on its permeability and separation performance [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2715-2723. |
[10] | Ruican MIAO, Shizhong ZHANG, Zhanxiu CHEN, Li YANG. Molecular dynamics simulation of bubble nucleation in restricted nanochannels [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1641-1648. |
[11] | Huiwen YU, Wenyu CUI, Tingting HAO, Xuehu MA. Heat transfer performance of wettability gradient surface oscillating heat pipe [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4375-4383. |
[12] | Xiaozhen LIU, Tai ZHANG, Changfa XIAO. Research progress on wettability of hydrophobic-oleophylic membranes in oil-water separation [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4516-4528. |
[13] | Shizhong ZHANG, Zhanxiu CHEN, Li YANG, Ruican MIAO, Zijian ZHANG. Molecular dynamics simulation of liquid boiling on different wetting surfaces [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3892-3899. |
[14] | Yingying YU,Jinchen TANG,Xuegong HU. Electric field effects on wettability and temperature distribution ofopen rectangular microgrooves [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 26-33. |
[15] | Mengdi DOU,Xuejie DING,Wenxin LIU,Wei ZHANG,Mohong LU,Mingshi LI,Jie ZHU. Carbon nanotubes supported palladium catalyst with wettability controllable surface and its catalytic performance in selective hydrogenation of 1,8-dinitronaphthalene [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 181-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |