1 |
TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
|
2 |
BIGHAM S, MOGHADDAM S. Microscale study of mechanisms of heat transfer during flow boiling in a microchannel[J]. International Journal of Heat and Mass Transfer, 2015, 88: 111-121.
|
3 |
HONG S H, DANG C B, HIHARA E. A 3D inlet distributor employing copper foam for liquid replenishment and heat transfer enhancement in microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2020, 157:119934.
|
4 |
YIH J, WANG H L. Experimental characterization of thermal-hydraulic performance of a microchannel heat exchanger for waste heat recovery[J]. Energy Conversion and Management, 2020, 204: 112309.
|
5 |
ASADI M, XIE G N, SUNDEN B. A review of heat transfer and pressure drop characteristics of single and two-phase microchannels[J]. International Journal of Heat and Mass Transfer, 2014, 79: 34-53.
|
6 |
PATIL M S, SEO J H, PANCHAL S, et al. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119728.
|
7 |
TAN H, WU L W, WANG M Y, et al. Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling[J]. International Journal of Heat and Mass Transfer, 2019, 129:681-689.
|
8 |
ZONG L X, XIA G D, JIA Y T, et al. Flow boiling instability characteristics in microchannels with porous-wall[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118863.
|
9 |
HONG S H, TANG Y L, WANG S F. Investigation on critical heat flux of flow boiling in parallel microchannels with large aspect ratio: experimental and theoretical analysis[J]. International Journal of Heat and Mass Transfer, 2018, 127: 55-66.
|
10 |
TIBIRICA C B, CZWLUSNIAK L E, RIBATSKI G. Critical heat flux in a 0.38mm microchannel and actions for suppression of flow boiling instabilities[J]. Experimental Thermal and Fluid Science, 2015, 67: 48-56.
|
11 |
KALANI A, KANDLIKAR S G. Flow patterns and heat transfer mechanisms during flow boiling over open microchannels in tapered manifold (OMM)[J]. International Journal of Heat and Mass Transfer, 2015, 89: 494-504.
|
12 |
YIN L F, JIANG P X, XU R N, et al. Heat transfer and pressure drop characteristics of water flow boiling in open microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 137: 204-215.
|
13 |
YIN L F, JIANG P X, XU R N, et al. Visualization of flow patterns and bubble behavior during flow boiling in open microchannels[J]. International Communications in Heat and Mass Transfer, 2017, 85: 131-138.
|
14 |
赵亚东, 张伟, 邬智宇,等.开式并联微通道中流动沸腾换热的实验研究[J]. 工程热物理学报,2018, 39(7): 1498-1504.
|
|
ZHAO Y D, ZHANG W, WU Z Y, et al. Experimental study on flow boiling heat transfer in open parallel microchannels[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1498-1504.
|
15 |
魏进家, 刘斌, 张永海. 常/微重力下微结构表面强化沸腾换热研究进展[J]. 化工进展, 2019, 38(1): 14-29.
|
|
WEI J J, LIU B, ZHANG Y H. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 14-29.
|
16 |
赵涌. 电刷镀法制备超疏水表面的试验研究[D]. 大连:大连理工大学,2012.
|
|
ZHAO Y. Experimental study of superhydrophobic surfaces obtained by brush plating technique[D]. Dalian: Dalian University of Technology, 2012.
|
17 |
张伟,牛志愿,李亚,等. 石墨烯/镍复合微结构表面的池沸腾传热特性[J]. 化工进展, 2018, 37(10): 3759-3764.
|
|
ZHANG W, NIU Z Y, LI Y, et al. Pool boiling heat transfer characteristics on graphene/nickel composite microstructures [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3759-3764.
|
18 |
HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3): 207-213.
|
19 |
FRITZ W. Maximum volume of vapor bubbles[J]. Physik Zsitsehr, 1935, 36: 379-384.
|
20 |
JACOB M. Heat transfer[M]. New York: Wiley, 1949.
|
21 |
郑晓欢, 纪献兵, 王野, 等. 超亲/疏水性表面池沸腾传热研究[J]. 化工进展, 2016, 35(12): 3793-3798.
|
|
ZHENG X H, JI X B, WANG Y, et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3793-3798.
|