Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4605-4617.DOI: 10.16085/j.issn.1000-6613.2021-2277
• Chemical processes and equipment • Previous Articles Next Articles
ZHANG Zhe(), LANG Yuanlu, CHEN Jia’nan, WU Qiaoyan, JI Hongwei, LI Xingbo, MA Yan, TAO Liuqian, WANG Jinyue
Received:
2021-11-08
Revised:
2022-02-09
Online:
2022-09-27
Published:
2022-09-25
Contact:
ZHANG Zhe
张哲(), 郎元路, 陈佳楠, 吴巧燕, 计宏伟, 李星泊, 马妍, 陶柳倩, 王瑾悦
通讯作者:
张哲
作者简介:
张哲(1975—),男,博士,教授,硕士生导师,研究方向为换热器强化换热。E-mail:zhangzhe@tjcu.edu.cn。
基金资助:
CLC Number:
ZHANG Zhe, LANG Yuanlu, CHEN Jia’nan, WU Qiaoyan, JI Hongwei, LI Xingbo, MA Yan, TAO Liuqian, WANG Jinyue. Analysis of effect of solid surface temperature on phase transition process and surface wetting characteristics of frozen droplets[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4605-4617.
张哲, 郎元路, 陈佳楠, 吴巧燕, 计宏伟, 李星泊, 马妍, 陶柳倩, 王瑾悦. 固体表面温度对冻结液滴的相变过程与表面润湿特性的影响[J]. 化工进展, 2022, 41(9): 4605-4617.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2277
组件名称 | 参数名称 | 参数值及名称 |
---|---|---|
摄像头 | 型号 | Allied Vision Stingray F-046B |
精度/μm | 8.3 | |
最大帧率/帧·s-1 | 61 | |
变焦倍率 | 6.5 | |
传感器型号 | Sony ICX415 | |
接触角精度/(°) | 0.3 | |
接触角分辨率/(°) | 0.01 | |
光源 | 型号 | 单色LED照明 |
观测舱 | 规格 | 150mm×150mm×60mm |
组件名称 | 参数名称 | 参数值及名称 |
---|---|---|
摄像头 | 型号 | Allied Vision Stingray F-046B |
精度/μm | 8.3 | |
最大帧率/帧·s-1 | 61 | |
变焦倍率 | 6.5 | |
传感器型号 | Sony ICX415 | |
接触角精度/(°) | 0.3 | |
接触角分辨率/(°) | 0.01 | |
光源 | 型号 | 单色LED照明 |
观测舱 | 规格 | 150mm×150mm×60mm |
基底温度/℃ | σ/mN∙m-1 |
---|---|
6 | 74.78 |
11 | 74.07 |
16 | 73.34 |
20 | 72.75 |
24 | 72.59 |
基底温度/℃ | σ/mN∙m-1 |
---|---|
6 | 74.78 |
11 | 74.07 |
16 | 73.34 |
20 | 72.75 |
24 | 72.59 |
基底温度/℃ | ∆T/℃ |
---|---|
6 | -0.1 |
11 | -0.2 |
16 | -0.5 |
20 | -0.7 |
24 | -0.9 |
基底温度/℃ | ∆T/℃ |
---|---|
6 | -0.1 |
11 | -0.2 |
16 | -0.5 |
20 | -0.7 |
24 | -0.9 |
参数 | 6℃ | 11℃ | 16℃ | 20℃ | 24℃ | |||
---|---|---|---|---|---|---|---|---|
ρ/g∙cm-3 | 1 | |||||||
cp /kJ∙kg-1∙℃-1 | 4.186 | |||||||
k/W∙cm-3 | 0.548 | 0.582 | 0.592 | 0.60 | 0.608 | |||
μ/10-3 N∙s∙m-2 | 1.4728 | 1.2713 | 1.1111 | 1.0050 | 0.9142 |
参数 | 6℃ | 11℃ | 16℃ | 20℃ | 24℃ | |||
---|---|---|---|---|---|---|---|---|
ρ/g∙cm-3 | 1 | |||||||
cp /kJ∙kg-1∙℃-1 | 4.186 | |||||||
k/W∙cm-3 | 0.548 | 0.582 | 0.592 | 0.60 | 0.608 | |||
μ/10-3 N∙s∙m-2 | 1.4728 | 1.2713 | 1.1111 | 1.0050 | 0.9142 |
1 | ROISMAN I V, BREITENBACH J, TROPEA C. Thermal atomisation of a liquid drop after impact onto a hot substrate[J]. Journal of Fluid Mechanics, 2018, 842: 87-101. |
2 | DING Y, JIA L, ZHANG Y X, et al. Investigation on R141b convective condensation in microchannel with low surface energy coating and hierarchical nanostructures surface[J]. Applied Thermal Engineering, 2019, 155: 480-488. |
3 | LEONI A, MONDOT M, DURIER F, et al. Frost formation and development on flat plate: experimental investigation and comparison to predictive methods[J]. Experimental Thermal and Fluid Science, 2017, 88: 220-233. |
4 | CHENG C H, SHIU C C. Frost formation and frost crystal growth on a cold plate in atmospheric air flow[J]. International Journal of Heat and Mass Transfer, 2002, 45(21): 4289-4303. |
5 | NISHIMOTO S, BHUSHAN B. Bioinspired self-cleaning surfaces with super-hydrophobicity, superoleophobicity, and superhydrophilicity[J]. RSC Advances, 2013, 3(3): 671-690. |
6 | JIANG L, ZHAO Y, ZHAI J. A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte Chemie International Edition, 2004, 43(33): 4338-4341. |
7 | WANG H, WANG D T, ZHANG X Y, et al. Modified PDMS with inserted hydrophilic particles for water harvesting[J]. Composites Science and Technology, 2021, 213: 108954. |
8 | HOU Y Q, WANG Q X, WANG S L, et al. Hydrophilic carbon nanotube membrane enhanced interfacial evaporation for desalination[J]. Chinese Chemical Letters, 2022, 33(4): 4. |
9 | KIM T H, CHANG SONG K. Effect of types of hydrophilic acrylic monomers in reducing glistenings of hydrophobic acrylic intraocular lenses[J]. Optical Materials, 2021, 119: 111401. |
10 | WANG J T, XU R Z, YANG F, et al. Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane[J]. Journal of Membrane Science, 2018, 556: 374-383. |
11 | ZHAO D L, ZHAO Q P, CHUNG T S. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination[J]. Desalination, 2021, 516: 115230. |
12 | XU H, KUCZYNSKA M, SCHAFET N, et al. Modeling the anisotropic temperature-dependent viscoplastic deformation behavior of short fiber reinforced thermoplastics[J]. Composites Science and Technology, 2021, 213: 108958. |
13 | ZHU C Z, PENG L, YU J J, et al. A numerical study on the thermal capillary-buoyancy convection of a binary mixture driven by rotation and surface-tension gradient in a shallow annular pool[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121035. |
14 | GUO J H, WATANABE S, JANIK M J, et al. Density functional theory study on adsorption of thiophene on TiO2 anatase (001) surfaces[J]. Catalysis Today, 2010, 149(1/2): 218-223. |
15 | SUN C, ZHAO X W, HAN Y H, et al. Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment[J]. Thin Solid Films, 2008, 516(12): 4059-4063. |
16 | ZHANG B X, WANG S L, HE X, et al. Statics and dynamics of nanodroplet electrowetting on an isothermally heated nanostructured surface[J]. Journal of Molecular Liquids, 2021, 342: 117468. |
17 | TANG X, HUANG J, GUO Z, et al. A combined structural and wettability gradient surface for directional droplet transport and efficient fog collection[J]. Journal of Colloid and Interface Science, 2021, 604. |
18 | YUAN Z C, MATSUMOTO M, KUROSE R. Directional rebounding of a droplet impinging hydrophobic surfaces with roughness gradients[J]. International Journal of Multiphase Flow, 2021, 138: 103611. |
19 | KONG W L, WANG L P, BIAN P X, et al. Effect of surface wettability on impact-freezing of supercooled large water droplet[J]. Experimental Thermal and Fluid Science, 2022, 130: 110508. |
20 | AHMAD I, PATHAK M, KHAN M K. Electrowetting induced microdroplet oscillation over interdigitated electrodes for hotspot cooling applications[J]. Experimental Thermal and Fluid Science, 2021, 125: 110372. |
21 | CHENGARA A, NIKOLOV A, WASAN D. Surface tension gradient driven spreading of trisiloxane surfactant solution on hydrophobic solid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1/2/3): 31-39. |
22 | KIM H, KIM D E. Effects of surface wettability on pool boiling process: dynamic and thermal behaviors of dry spots and relevant critical heat flux triggering mechanism[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121762. |
23 | BUCHER F, KNOTHE K, THEILER A. Normal and tangential contact problem of surfaces with measured roughness[J]. Wear, 2002, 253(1/2): 204-218. |
24 | BAI P, ZHOU L P, DU X Z. Effects of surface temperature and wettability on explosive boiling of nanoscale water film over copper plate[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120375. |
25 | YE X M, ZHANG X S, LI M L, et al. Contact line dynamics of two-dimensional evaporating drops on heated surfaces with temperature-dependent wettabilities[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1263-1279. |
26 | SALEH H, HASHIM I. Buoyant Marangoni convection of nanofluids in square cavity[J]. Applied Mathematics and Mechanics, 2015, 36(9): 1169-1184. |
27 | 齐崇海. 固体表面有序单层水对浸润及介电性质的影响研究[D]. 济南: 山东大学, 2021. |
QI Chonghai. The effect of ordered water monolayer above the solid surface on the wetting behavior and dielectric properties[D]. Jinan: Shandong University, 2021. | |
28 | 任庆, 边明远, 陈飞武. 液体的表面吸附: 表面相厚度和热效应的理论研究[J]. 化学通报, 2019, 82(3): 237-242. |
REN Qing, BIAN Mingyuan, CHEN Feiwu. Surface adsorption of liquids: a theoretical study on surface phase thickness and heat effects[J]. Chemistry, 2019, 82(3): 237-242. | |
29 | 赵文景, 王进, 秦威广, 等. 基于Marangoni效应的液-液驱动铺展过程[J]. 物理学报, 2021, 70(18): 184701. |
ZHAO Wenjing, WANG Jin, QIN Weiguang, et al. Liquid-liquid-driven spreading process based on Marangoni effect[J]. Acta Physica Sinica, 2021, 70(18): 184701. | |
30 | 高明, 张达, 孔鹏, 等. 恒热流条件下液滴蒸发Marangoni对流实验研究[J]. 热能动力工程, 2020, 35(12): 88-93. |
GAO Ming, ZHANG Da, KONG Peng, et al. Experimental investigation on the Marangoni convection of sessile droplet at constant heat flux condition[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(12): 88-93. |
[1] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[2] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[3] | ZHANG Zhe, LANG Yuanlu, WU Qiaoyan, CHEN Jianan, JI Hongwei, LI Xingbo, MA Yan, TAO Liouqian, QIAO Chunyan, WANG Jinyue. Analysis of surface and interface evolution characteristics of freezing droplet during melting [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 1-14. |
[4] | LI Yucan, HU Dinghua, LIU Jinhui. Evolution characteristics of transient evaporation rate of Al2O3 nanofluid droplet [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3493-3501. |
[5] | SUN Nana, SUN Huina, SHEN Lisha, SU Ruiyu, ZHAO Chao. Synergistic demulsification of magnetic nanoparticle-microwave on heavy oil O/W emulsion [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3127-3137. |
[6] | XIONG Lu, SHI Lei, WANG Wenyu, JIN Xin, NIU Jiarong, ZHU Zhengtao, LIN Tong. Progress in unidirectional water/oil transport porous materials based on design of wettability gradient [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2526-2536. |
[7] | ZHANG Shizhong, CHEN Zhanxiu, LIU Fengrui, PANG Runyu, WANG Qing. Molecular dynamics simulation of liquid boiling on nanostructured surfaces [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2311-2321. |
[8] | ZHANG Chunchao, PAN Yanqiu, DU Yujie, GAO Shilei, YU Lu. Numerical simulation of droplet impacting liquid film with bubbles in spray cooling [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1735-1741. |
[9] | ZHANG Tianhao, XU Haojie, WU Tianyi, LI Bufa, WANG Junfeng. Numerical simulation of evaporation and internal flow of substrate droplet under electric field [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 609-618. |
[10] | SHAN Linna, YANG Zhensheng, YAN Guofei, LI Chunli, LI Hao, WANG Zhiying. Asymmetric Janus membranes based on hydrophilic modification of dopamine for efficient oil/water separation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6500-6510. |
[11] | CUI Wenyu, JIANG Zhen, HAO Tingting, WEN Rongfu, MA Xuehu. Heat transfer performance of oscillating heat pipe with micro-nano droplets of liquid metal [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 95-103. |
[12] | WANG Shuai, ZHAO Jinzhu, WANG Rongyuan, CUI Kaixiang, JING Jiaqiang. New ideas of heavy oil flow drag reduction by emulsification and wetting coupling action [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 126-139. |
[13] | ZHAO Ning, FENG Yongxin, LIN Tingkun, XIE Zhiwen. Research progresses on evaporation characteristics of desulfurization wastewater droplets in high-temperature flue gas [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4508-4514. |
[14] | YUAN Yuting, FENG Yongchao, YI Honghong, TANG Xiaolong, YU Qingjun, ZHANG Yuanyuan, WEI Jinghui, MENG Xianzheng. Research progress of superhydrophobic surface materials and its application in air pollution control [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4327-4345. |
[15] | WANG Yu, PAN Zhenhai. Analysis of evaporation characteristics of small water droplets sessile on horizontal and vertical substrates [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3632-3644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |