Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 95-103.DOI: 10.16085/j.issn.1000-6613.2021-0233
• Chemical processes and equipment • Previous Articles Next Articles
CUI Wenyu(), JIANG Zhen, HAO Tingting(), WEN Rongfu, MA Xuehu
Received:
2021-01-31
Revised:
2021-04-24
Online:
2022-01-24
Published:
2022-01-05
Contact:
HAO Tingting
通讯作者:
郝婷婷
作者简介:
崔文宇(1996—),男,硕士研究生,研究方向为脉动热管性能。E-mail:基金资助:
CLC Number:
CUI Wenyu, JIANG Zhen, HAO Tingting, WEN Rongfu, MA Xuehu. Heat transfer performance of oscillating heat pipe with micro-nano droplets of liquid metal[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 95-103.
崔文宇, 蒋振, 郝婷婷, 温荣福, 马学虎. 液态金属微液滴脉动热管的传热性能[J]. 化工进展, 2022, 41(1): 95-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0233
工质 | 熔点/℃ | 沸点/℃ | 蒸汽压力/mmHg | 比热容/kJ·kg-1·K-1 | 密度/kg·m-3 | 热导率/W·m-1·℃-1 | 黏度/Pa·s | 表面张力/N·m-1 |
---|---|---|---|---|---|---|---|---|
镓铟锡合金 | -19 | >1300 | <10-8(500℃) | 0.2 | 6440 | 16.5 | 2.4×10-3(20℃) | 0.718(20℃) |
水 | 0 | 100 | 760(100℃) | 4.183(20℃) | 998.2(20℃) | 0.599(20℃) | 1.005×10-3(20℃) | 0.0727(20℃) |
工质 | 熔点/℃ | 沸点/℃ | 蒸汽压力/mmHg | 比热容/kJ·kg-1·K-1 | 密度/kg·m-3 | 热导率/W·m-1·℃-1 | 黏度/Pa·s | 表面张力/N·m-1 |
---|---|---|---|---|---|---|---|---|
镓铟锡合金 | -19 | >1300 | <10-8(500℃) | 0.2 | 6440 | 16.5 | 2.4×10-3(20℃) | 0.718(20℃) |
水 | 0 | 100 | 760(100℃) | 4.183(20℃) | 998.2(20℃) | 0.599(20℃) | 1.005×10-3(20℃) | 0.0727(20℃) |
液态金属质量分数/% | 平均粒度/nm |
---|---|
5 | 460.2 |
10 | 423.8 |
20 | 455.2 |
25 | 511.0 |
液态金属质量分数/% | 平均粒度/nm |
---|---|
5 | 460.2 |
10 | 423.8 |
20 | 455.2 |
25 | 511.0 |
1 | BASTAKOTI D, ZHANG H N, LI D, et al. An overview on the developing trend of pulsating heat pipe and its performance[J]. Applied Thermal Engineering, 2018, 141: 305-332. |
2 | HAN X H, WANG X H, ZHENG H C, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. |
3 | 屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1): 33-41. |
QU Jian. Oscillating heat pipes: state of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 33-41. | |
4 | AYEL V, ARANEO L, MARZORATI P, et al. Visualization of flow patterns in closed loop flat plate pulsating heat pipe acting as hybrid thermosyphons under various gravity levels[J]. Heat Transfer Engineering, 2019, 40(3/4): 227-237. |
5 | 李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270. |
LI Xiaojun, QU Jian, HAN Xinyue, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270. | |
6 | KWON G H, KIM S J. Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel[J]. International Journal of Heat and Mass Transfer, 2015, 89: 817-828. |
7 | 章旺, 卢晓剑, 许国良, 等. 一种两管径式脉动热管的流动与传热特性[J]. 航空动力学报, 2020, 35(11): 2371-2377. |
ZHANG Wang, LU Xiaojian, XU Guoliang, et al. Flow and heat transfer characteristics of a two-diameter pulsating heat pipe[J]. Journal of Aerospace Power, 2020, 35(11): 2371-2377. | |
8 | JI Y L, XU C, MA H B, et al. An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface[J]. Journal of Heat Transfer, 2013, 135(7): 074504. |
9 | HAO T T, MA X H, LAN Z, et al. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 72: 50-65. |
10 | 于慧文, 崔文宇, 郝婷婷, 等. 梯度润湿表面脉动热管传热性能的研究[J]. 化工进展, 2020, 39(11): 4375-4383. |
YU Huiwen, CUI Wenyu, HAO Tingting, et al. Heat transfer performance of wettability gradient surface oscillating heat pipe[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4375-4383. | |
11 | PATEL V M, GAURAV, MEHTA H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 110: 1568-1577. |
12 | ZHU Y, CUI X Y, HAN H, et al. The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures[J]. International Journal of Heat and Mass Transfer, 2014, 77: 834-842. |
13 | 王迅, 肖冲, 李月月. 甲醇、丙酮及其二元混合工质脉动热管的启动特性[J]. 化工进展, 2016, 35(9): 2678-2684. |
WANG Xun, XIAO Chong, LI Yueyue. Experimental study on the start-up characteristic of pulsating heat pipe with methanol/acetone and binary mixed working fluids[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2678-2684. | |
14 | SHI S Y, CUI X Y, HAN H, et al. A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures[J]. Applied Thermal Engineering, 2016, 102: 1219-1227. |
15 | 张超, 徐荣吉, 陈静妍, 等. 非共沸不互溶混合工质脉动热管启动特性分析[J]. 化工进展, 2019, 38(12): 5279-5286. |
ZHANG Chao, XU Rongji, CHEN Jingyan, et al. Analysis of start-up characteristics of pulsating heat pipe with zeotropic immiscible mixtures[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5279-5286. | |
16 | LIANG Q Q, HAO T T, WANG K, et al. Startup and transport characteristics of oscillating heat pipe using ionic liquids[J]. International Communications in Heat and Mass Transfer, 2018, 94: 1-13. |
17 | MA H B, WILSON C, BORGMEYER B, et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe[J]. Applied Physics Letters, 2006, 88(14): 143116. |
18 | QU J, WU H Y, CHENG P. Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids[J]. International Communications in Heat and Mass Transfer, 2010, 37(2): 111-115. |
19 | MA K Q, LIU J. Nano liquid-metal fluid as ultimate coolant[J]. Physics Letters A, 2007, 361(3): 252-256. |
20 | KHOSHMANESH K, TANG S Y, ZHU J Y, et al. Liquid metal enabled microfluidics[J]. Lab on a Chip, 2017, 17(6): 974-993. |
21 | 曹春蕾, 何孝天, 马骁婧, 等. 液态金属软表面池沸腾传热的实验研究[J]. 物理学报, 2021, 70(13): 134703. |
CAO C L, HE X T, MA X J, et al. Enhanced pool boiling heat transfer on soft liquid metal surface[J]. Acta Physica Sinica., 2021, 70(13): 134703. | |
22 | HAO T T, MA H B, MA X H. Experimental investigation of oscillating heat pipe with hybrid fluids of liquid metal and water[J]. Journal of Heat Transfer, 2019, 141(7): 071802. |
23 | YU Y, WANG Q, YI L T, et al. Channelless fabrication for large-scale preparation of room temperature liquid metal droplets[J]. Advanced Engineering Materials, 2014, 16(2): 255-262. |
24 | YANG L X, ZHAO X, XU S, et al. Oxide transformation and break-up of liquid metal in boiling solutions[J]. Science China Technological Sciences, 2020, 63(2): 289-296. |
25 | REN L, ZHUANG J C, CASILLAS G, et al. Nanodroplets for stretchable superconducting circuits[J]. Advanced Functional Materials, 2016, 26(44): 8111-8118. |
26 | CHEN S, DING Y J, ZHANG Q L, et al. Controllable dispersion and Reunion of liquid metal droplets[J]. Science China Materials, 2019, 62(3): 407-415. |
27 | GAO Y X, WANG L, LI H Y, et al. Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade[J]. Frontiers in Energy, 2014, 8(1): 49-61. |
28 | LIU T Y, SEN P, KIM C J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems, 2012, 21(2): 443-450. |
29 | FAGHRI A, ZHANG Y W. Introduction to transport phenomena[M]//Transport Phenomena in Multiphase Systems. Amsterdam: Elsevier, 2006: 1-106. |
30 | 武丽艳, 尚贞锋, 赵鸿喜. 电导法测定水溶性表面活性剂临界胶束浓度实验的改进[J]. 实验技术与管理, 2006, 23(2): 29-30. |
WU Liyan, SHANG Zhenfeng, ZHAO Hongxi. Improving the experiment of measuring water-solubility surface-active agent’s critical micelle concentration by the conductive method[J]. Experimental Technology and Management, 2006, 23(2): 29-30. | |
31 | CHENG P, MA H B. A mathematical model of an oscillating heat pipe[J]. Heat Transfer Engineering, 2011, 32(11/12): 1037-1046. |
[1] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[2] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[3] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[4] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[5] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[6] | GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. |
[7] | YAO Wen, ZHANG Yuchen, TENG Wenxin, LI Jiangling. Effect of surfactant on the preparation of Ca-doped β-In2S3 microstructure and its performance in photocatalytic degradation of methyl orange [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 774-782. |
[8] | BI Qiang, MEI Yi, XIA Jupei. Basic research on preparation and activity combined excitation of anhydrite-Ⅱ phosphogypsum [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5427-5435. |
[9] | DENG Quanlong, DING Houcheng, XU Yuandi, JIANG Zhong’an, YANG Lan, SUN Xuefei. Synergistic dust removal performance of surfactant droplets combined with metal mesh grid [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 546-552. |
[10] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[11] | ZHANG Qingqing, BI Haipu, SHU Zhongjun, OU Hongxiang, WANG Shangbin, WANG Junqi, PAN Yi. Research progress on control behaviors and substitutes of PFOS in foam extinguishing agents [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 340-350. |
[12] | ZHANG Yixi, ZHANG Fengrunze, SANG Yutong, ZHENG Jingxi, LIU Xuemin, ZHANG Hua, ZHANG Peng. Application status and thinking of clean fracturing fluid suitable for northern winter construction [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5003-5010. |
[13] | ZHAO Liang, WANG Yan, WANG Gang, FANG Xiangchen, DUAN Xiaoguang, WANG Shaobin. Application of paraffin@gelatinized flour phase change microcapsule in building materials [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2566-2573. |
[14] | YUAN Ying, JING Jiaqiang, YIN Ran, ZHANG Ming, HAN Li, LAI Tianhua. Synergistic drag reduction effect of cationic surfactant and polymer compound system [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2593-2603. |
[15] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |