Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5518-5529.DOI: 10.16085/j.issn.1000-6613.2021-2553
• Materials science and technology • Previous Articles Next Articles
YIN Shaowu1,2(), KANG Peng1, HAN Jiawei1, ZHANG Chao1, WANG Li1,2, TONG Lige1,2
Received:
2021-12-15
Revised:
2022-01-30
Online:
2022-10-21
Published:
2022-10-20
Contact:
YIN Shaowu
尹少武1,2(), 康鹏1, 韩嘉维1, 张朝1, 王立1,2, 童莉葛1,2
通讯作者:
尹少武
作者简介:
尹少武(1979—),男,博士,副教授,研究方向为电池热管理。E-mail:yinsw@ustb.edu.cn。
基金资助:
CLC Number:
YIN Shaowu, KANG Peng, HAN Jiawei, ZHANG Chao, WANG Li, TONG Lige. Thermal management performance of lithium-ion battery based on phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5518-5529.
尹少武, 康鹏, 韩嘉维, 张朝, 王立, 童莉葛. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2553
参数 | 数值 |
---|---|
半径/mm | 9 |
高度/mm | 65 |
标称容量/mAh | 3200 |
额定电压/V | 3.7 |
满电电压/V | 4.2 |
内阻/mΩ | 25 |
质量/g | 46 |
密度/kg·m-3 | 2720 |
比热容/J·kg-1·K-1 | 300 |
热导率/W·m-1·K-1 | 3 |
参数 | 数值 |
---|---|
半径/mm | 9 |
高度/mm | 65 |
标称容量/mAh | 3200 |
额定电压/V | 3.7 |
满电电压/V | 4.2 |
内阻/mΩ | 25 |
质量/g | 46 |
密度/kg·m-3 | 2720 |
比热容/J·kg-1·K-1 | 300 |
热导率/W·m-1·K-1 | 3 |
参数 | 数值 |
---|---|
密度/kg·m-3 | 910 |
比热容/J·kg-1·K-1 | 2250 |
热导率/W·m-1·K-1 | 0.2 |
熔点/℃ | 44 |
相变潜热/J·g-1 | 232 |
参数 | 数值 |
---|---|
密度/kg·m-3 | 910 |
比热容/J·kg-1·K-1 | 2250 |
热导率/W·m-1·K-1 | 0.2 |
熔点/℃ | 44 |
相变潜热/J·g-1 | 232 |
膨胀石墨质量分数/ % | 相变潜热/ J·g-1 | 热导率/W·m-1·K-1 |
---|---|---|
0 | 232.0 | 0.21 |
5 | 221.5 | 2.15 |
10 | 209.2 | 3.83 |
15 | 196.1 | 5.47 |
20 | 187.6 | 7.14 |
膨胀石墨质量分数/ % | 相变潜热/ J·g-1 | 热导率/W·m-1·K-1 |
---|---|---|
0 | 232.0 | 0.21 |
5 | 221.5 | 2.15 |
10 | 209.2 | 3.83 |
15 | 196.1 | 5.47 |
20 | 187.6 | 7.14 |
1 | 张红妮, 张雅丽, 王虹霞. 电动汽车动力电池现状与发展[J]. 汽车实用技术, 2019(6): 16-17, 44. |
ZHANG Hongni, ZHANG Yali, WANG Hongxia. Current status and development of electric vehicle power battery[J]. Automobile Applied Technology, 2019(6): 16-17, 44. | |
2 | OUYANG Dongxu, LIU Jiahao, CHEN Mingyi, et al. An experimental study on the thermal failure propagation in lithium-ion battery pack[J]. Journal of the Electrochemical Society, 2018, 165(10): A2184-A2193. |
3 | FATHABADI H. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J]. Energy, 2014, 70: 529-538. |
4 | SOMASUNDARAM K, BIRGERSSON E, MUJUMDAR A S. Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery[J]. Journal of Power Sources, 2012, 203: 84-96. |
5 | AN Zhoujian, JIA Li, DING Yong, et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of Thermal Science, 2017, 26(5): 391-412. |
6 | ZHANG Qi, WHITE R E. Calendar life study of Li-ion pouch cells: Part 2: Simulation[J]. Journal of Power Sources, 2008, 179(2): 785-792. |
7 | 唐致远, 管道安, 张娜, 等. 锂离子动力电池的安全性研究进展[J]. 化工进展, 2005, 24(10): 1098-1102. |
TANG Zhiyuan, GUAN Daoan, ZHANG Na, et al. Research on safety characteristics of high power lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2005, 24(10): 1098-1102. | |
8 | HUANG Yuqi, MEI Pan, LU Yiji, et al. A novel approach for lithium-ion battery thermal management with streamline shape mini channel cooling plates[J]. Applied Thermal Engineering, 2019, 157: 113623. |
9 | LI Xinke, ZHAO Jiapei, YUAN Jinliang, et al. Simulation and analysis of air cooling configurations for a lithium-ion battery pack[J]. Journal of Energy Storage, 2021, 35: 102270. |
10 | ZHANG Furen, WANG Pengwei, YI Mengfei. Design optimization of forced air-cooled lithium-ion battery module based on multi-vents[J]. Journal of Energy Storage, 2021, 40: 102781. |
11 | 宋俊杰, 王义春, 王腾. 动力电池组分层风冷式热管理系统仿真[J]. 化工进展, 2017, 36(S1): 187-194. |
SONG Junjie, WANG Yichun, WANG Teng. Simulation of layered air cooling thermal management system for lithium-ion battery pack[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 187-194. | |
12 | AN Z, SHAH K, JIA L, et al. A parametric study for optimization of minichannel based battery thermal management system[J]. Applied Thermal Engineering, 2019, 154: 593-601. |
13 | FANG Yidong, SHEN Jiali, ZHU Yue, et al. Investigation on the transient thermal performance of a mini-channel cold plate for battery thermal management[J]. Journal of Thermal Science, 2021, 30(3): 914-925. |
14 | SIRUVURI S D V S V, BUDARAPU P R. Studies on thermal management of lithium-ion battery pack using water as the cooling fluid[J]. Journal of Energy Storage, 2020, 29: 101377. |
15 | TOUSI M, SARCHAMI A, KIANI M, et al. Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath[J]. Journal of Energy Storage, 2021, 41: 102910. |
16 | WANG Yanan, WANG Zhengkun, MIN Haitao, et al. Performance investigation of a passive battery thermal management system applied with phase change material[J]. Journal of Energy Storage, 2021, 35: 102279. |
17 | WANG Yan, GAO Qing, WANG Guohua, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. International Journal of Energy Research, 2018, 42(13): 4008-4033. |
18 | 王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217. |
WANG Haimin, WANG Yufei, HU Feng. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. | |
19 | HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231. |
20 | CHEN Fenfang, HUANG Rui, WANG Chongming, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173: 115154. |
21 | HUANG Rui, LI Zhi, HONG Wenhua, et al. Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management[J]. Energy Reports, 2020, 6: 8-19. |
22 | 吕学文, 考宏涛, 李敏. 膨胀石墨/石蜡复合相变材料相变过程的热分析[J]. 材料导报, 2011, 25(4): 131-133, 137. |
Xuewen LYU, Hongtao KAO, LI Min. Thermal analysis in phase transition process of expanded graphite/paraffin wax composite phase change materials[J]. Materials Review, 2011, 25(4): 131-133, 137. | |
23 | ZHANG Jiangyun, LI Xinxi, ZHANG Guoqing, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management[J]. Energy Conversion and Management, 2020, 204: 112319. |
24 | LING Ziye, WANG Fangxian, FANG Xiaoming, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. |
25 | WU Weixiong, YANG Xiaoqing, ZHANG Guoqing, et al. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack[J]. Energy, 2016, 113: 909-916. |
26 | ZHANG Xuan, LIU Chenzhen, RAO Zhonghao. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material[J]. Journal of Cleaner Production, 2018, 201: 916-924. |
27 | JAVANI N, DINCER I, NATERER G F, et al. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. International Journal of Heat and Mass Transfer, 2014, 72: 690-703. |
28 | SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2): 630-638. |
29 | SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Sources, 2001, 99(1/2): 70-77. |
30 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
[1] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[2] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[3] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[4] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[5] | CHEN Peijia, GE Xin, LIANG Weijie, YIN Shuang, ZHANG Zhicong, LYU Jianer, LIU Weidong, CHEN Youpeng, GE Jianfang. Research progress of polymer-based thermal interface materials and thermal conductivity properties [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 269-281. |
[6] | CAI Chuyue, FANG Xiaoming, LING Ziye, ZHANG Zhengguo. Research progress on thermal conductivity enhancement and form stability improvement of phase change thermal interface materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4907-4917. |
[7] | XIONG Xin, SU Qingzong, NONG Zengyao, WANG Yaxiong. Visualization and numerical analysis of heat transfer enhancement in the shell and tube latent thermal energy storage unit by the heating method [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4635-4643. |
[8] | ZHANG Chunwei, LI Shanfeng, GUO Yongzhao, ZHANG Xuejun, JIANG Long. Gravity effect on PCM melting process under constant heat flux boundary [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4129-4139. |
[9] | ZHU Mengshuai, WANG Zilong, SUN Xiangxin, ZHOU Xiang. Experimental research on effect of copper metal foam proportion on paraffin wax melting and heat transfer mechanism under high cell density [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3203-3211. |
[10] | WAN Qian, WANG Mingjie, HE Luxi, FENG Xiaojiang, HE Zhengbin, YI Songlin. Heat storage and release process and numerical simulation of copper foam/paraffin composite phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2046-2053. |
[11] | ZHOU Taotao, XIONG Zhibo, WU Zhigen, LI Shang. Characters of electric resistance and heating of expanded graphite/paraffin composite phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 892-900. |
[12] | ZHANG Xinyu, ZHAO Zhenxia. Research progress of metal-organic framework-based phase-change materials for thermal energy storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6408-6418. |
[13] | YU Xinghai, TANG Haiwei, LI Yan’an, HAN Yuqi, MIN Xuemei. Electro- and photo-driven phase change composites based on stearic acid-infiltrated biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5936-5945. |
[14] | FAN Yingjie, DANG Minhui, ZHANG Jie, WU Zhiqiang, YANG Bolun. Process analysis and model scale investigation on waste heat recovery from semi-coke dry quenching of pulverized coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 182-191. |
[15] | SHU Zhao, ZHONG Ke, XIAO Xin, JIA Hongwei, LYU Fengyong, CHANG Sha. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |