1 |
林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179.
|
|
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179.
|
2 |
李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562.
|
|
LI Shuankui, LIN Yuan, PAN Feng. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562.
|
3 |
于永生, 井强山, 孙雅倩. 低温相变储能材料研究进展[J]. 化工进展, 2010, 29(5): 896-900, 913.
|
|
YU Yongsheng, JING Qiangshan, SUN Yaqian. Progress in studies of low temperature phase-change energy storage materials[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 896-900, 913.
|
4 |
陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44, 72.
|
|
CHEN Aiying, WANG Xueying, CAO Xuezeng. Research and application of phase change material (PCM) used as energy storing material[J]. Materials Review, 2003, 17(5): 42-44, 72.
|
5 |
LI Min, SHI Junbing. Review on micropore grade inorganic porous medium based form stable composite phase change materials: preparation, performance improvement and effects on the properties of cement mortar[J]. Construction and Building Materials, 2019, 194: 287-310.
|
6 |
WANG Changhong, LIN Tao, LI Na, et al. Heat transfer enhancement of phase change composite material: copper foam/paraffin[J]. Renewable Energy, 2016, 96: 960-965.
|
7 |
LEI Jie, YANG Changchuan, HUANG Xuhui, et al. Solidification enhancement of phase change materials using nanoparticles and metal foams with nonuniform porosity[J]. Journal of Energy Storage, 2021, 44: 103420.
|
8 |
YUAN Mengdi, REN Yunxiu, XU Chao, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136: 211-222.
|
9 |
TIAN Heqing, WANG Weilong, DING Jing, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 187-194.
|
10 |
SUN Keyan, KOU Yan, ZHANG Yanwei, et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445-3453.
|
11 |
LIU Yurong, XIA Yongpeng, AN Kang, et al. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior[J]. Journal of Materials Science & Technology, 2019, 35(5): 939-945.
|
12 |
LIU Lu, HU Jin, FAN Xiaoqiao, et al. Phase change materials with Fe3O4/GO three-dimensional network structure for acoustic-thermal energy conversion and management[J]. Chemical Engineering Journal, 2021, 426: 130789.
|
13 |
CAO Ruirui, LI Xuan, CHEN Sai, et al. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites[J]. Energy, 2017, 138: 157-166.
|
14 |
陈文艺, 陆启玉, 钟南京. 金属有机骨架固定脂肪酶的研究进展[J]. 河南工业大学学报(自然科学版), 2021, 42(2): 121-128, 135.
|
|
CHEN Wenyi, LU Qiyu, ZHONG Nanjing. Recent advances in lipase immobilization by metal-organic frameworks[J]. Journal of Henan University of Technology (Natural Science Edition), 2021, 42(2): 121-128, 135.
|
15 |
王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494.
|
|
WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494.
|
16 |
HAN Li, ZHANG Xiaomin, WU Deyong. Construction and characterization of BiOI/NH2-MIL-125(Ti) heterostructures with excellent visible-light photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3773-3781.
|
17 |
FU Yangjie, ZHANG Kejie, ZHANG Yi, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engineering Journal, 2021, 412: 128722.
|
18 |
KWON Dong il, KIM Jeong Chul, LEE Haesol, et al. Engineering micropore walls of beta zeolites by post-functionalization for CO2 adsorption performance screening under humid conditions[J]. Chemical Engineering Journal, 2022, 427: 131461.
|
19 |
MOHD AZMI Luqman Hakim, CHERUKUPALLY Pavani, Elwin HUNTER-SELLARS, et al. Fabrication of MIL-101-polydimethylsiloxane composites for environmental toluene abatement from humid air[J]. Chemical Engineering Journal, 2022, 429: 132304.
|
20 |
XIE Linhua, LIU Xiaomin, HE Tao, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927.
|
21 |
JI Chenghan, REN Yi, YU Hang, et al. Highly efficient and selective Hg(Ⅱ) removal from water by thiol-functionalized MOF-808: kinetic and mechanism study[J]. Chemical Engineering Journal, 2022, 430: 132960.
|
22 |
MA Xiaoyan, WANG Lei, WANG Hong, et al. Insights into metal-organic frameworks HKUST-1 adsorption performance for natural organic matter removal from aqueous solution[J]. Journal of Hazardous Materials, 2022, 424(Pt C): 126918.
|
23 |
ZENG Yifang, CAMARADA María Belén, LU Xinyu, et al. Detection and electrocatalytic mechanism of zearalenone using nanohybrid sensor based on copper-based metal-organic framework/magnetic Fe3O4-graphene oxide modified electrode[J]. Food Chemistry, 2022, 370: 131024.
|
24 |
MA Junping, BAI Wushuang, ZHENG Jianbin. A novel self-cleaning electrochemical biosensor integrating copper porphyrin-derived metal-organic framework nanofilms, G-quadruplex, and DNA nanomotors for achieving cyclic detection of lead ions[J]. Biosensors and Bioelectronics, 2022, 197: 113801.
|
25 |
WANG Deqing, ZHENG Pu, CHEN Pengcheng, et al. Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin[J]. Bioresource Technology, 2021, 323: 124611.
|
26 |
ZHAO Zhenghong, HUANG Yaojing, LIU Wenren, et al. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4481-4488.
|
27 |
KONG Xiangjing, LI Jianrong. An overview of metal-organic frameworks for green chemical engineering[J]. Engineering, 2021, 7(8): 1115-1139.
|
28 |
ZAHIR Md Hasan, HELAL Aasif, HAKEEM Abbas S. Hybrid polyMOF materials prepared by combining an organic polymer with a MOF and their application for solar thermal energy storage[J]. Energy & Fuels, 2021, 35(12): 10199-10209.
|
29 |
CHEN Xi, KONG Xiangyun, WANG Shuaiyin, et al. Facile preparation of metal/metal-organic frameworks decorated phase change composite materials for thermal energy storage[J]. Journal of Energy Storage, 2021, 40: 102711.
|
30 |
陈赛, 陶丽娟, 李伟, 等. ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3896-3903.
|
|
CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/(tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903.
|
31 |
CHEN Xiao, GAO Hongyi, TANG Zhaodi, et al. Metal-organic framework-based phase change materials for thermal energy storage[J]. Cell Reports Physical Science, 2020, 1(10): 100218.
|
32 |
原野, 王明, 周云琪, 等. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450.
|
|
YUAN Ye, WANG Ming, ZHOU Yunqi, et al. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450.
|
33 |
LUAN Yi, YANG Ming, MA Qianqian, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649.
|
34 |
KANG Hyungmook, DAMES Chris, URBAN Jeffrey J. Melting point depression and phase identification of sugar alcohols encapsulated in ZIF nanopores[J]. The Journal of Physical Chemistry C, 2021, 125(18): 10001-10010.
|
35 |
TANG Jia, CHEN Xingyu, ZHANG Liguo, et al. Alkylated meso-macroporous metal-organic framework hollow tubes as nanocontainers of octadecane for energy storage and thermal regulation[J]. Small, 2018, 14(35): e1801970.
|
36 |
ATINAFU Dimberu G, CHANG Seong Jin, KIM Ki Hyun, et al. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal-organic framework[J]. Chemical Engineering Journal, 2020, 389: 124430.
|
37 |
FU Yilin, ZHEN Liping, ZHOU Bo, et al. New strategy of synthesizing zeolitic imidazolate framework-67 with hierarchical pores for heat storage[J]. Materials Letters, 2021, 293: 129722.
|
38 |
海广通, 薛祥东, 苏天琪, 等. 金属有机骨架与相变芯材相互作用的分子动力学[J]. 工程科学学报, 2020, 42(1): 99-105.
|
|
Guangtong HAI, XUE Xiangdong, SU Tianqi, et al. Molecular dynamics study on the interaction between metal-organic frameworks and phase change core materials[J]. Chinese Journal of Engineering, 2020, 42(1): 99-105.
|
39 |
LI Pei, FENG Daili, FENG Yanhui, et al. Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: a molecular dynamics simulation[J]. Case Studies in Thermal Engineering, 2021, 26: 101027.
|
40 |
FENG Daili, FENG Yanhui, ZANG Yuyang, et al. Phase change in modified metal organic frameworks MIL-101(Cr): mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132.
|
41 |
CHEN Xiao, GAO Hongyi, YANG Mu, et al. Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials[J]. Energy Storage Materials, 2019, 18: 349-355.
|
42 |
周奇, 吴宇恩. 热解法制备MOF衍生多孔碳材料研究进展[J]. 科学通报, 2018, 63(22): 2246-2267.
|
|
ZHOU Qi, WU Yuen. Research progress on prepartion of MOF-derived porous carbon materials through pyrolysis[J]. Chinese Science Bulletin, 2018, 63(22): 2246-2267.
|
43 |
TANG Jia, YANG Ming, DONG Wenjun, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114.
|
44 |
FENG Dai-Li, ZANG Yu-Yang, LI Pei, et al. Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability[J]. Composites Science and Technology, 2021, 210: 108832.
|
45 |
ATINAFU Dimberu G, DONG Wenjun, HOU Changmin, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy, 2019, 12: 239-249.
|
46 |
WANG Miao, LIU Mingming, LI Pan, et al. Lauric acid encapsulated in P-doped carbon matrix with reinforced heat storage performance for efficient battery cooling[J]. Journal of Energy Storage, 2021, 44: 103461.
|
47 |
ISLAMOV Meiirbek, BABAEI Hasan, WILMER Christopher E. Influence of missing linker defects on the thermal conductivity of metal-organic framework HKUST-1[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56172-56177.
|
48 |
KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502.
|
49 |
WANG Jingjing, HUANG Xiubing, GAO Hongyi, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2018, 350: 164-172.
|
50 |
XU Tao, CHEN Qinglin, HUANG Gongsheng, et al. Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2016, 155: 141-146.
|
51 |
HU Tao, CHANG Shuya, WU Hongzheng, et al. Construction of high thermal conductivity MOFs composite phase change materials with reinforced light-to-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111339.
|
52 |
LI Ang, DONG Cheng, DONG Wenjun, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32093-32101.
|
53 |
LI Ang, WANG Jingjing, DONG Cheng, et al. Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity[J]. Applied Energy, 2018, 217: 369-376.
|
54 |
LI Dan, CHENG Xiaomin, LI Yuanyuan, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142-149.
|
55 |
WANG Miao, LI Pan, YU Faquan. Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage[J]. Renewable Energy, 2021, 172: 599-605.
|
56 |
ATINAFU Dimberu G, YUN Beom Yeol, YANG Sungwoong, et al. Updated results on the integration of metal-organic framework with functional materials toward n-alkane for latent heat retention and reliability[J]. Journal of Hazardous Materials, 2022, 423: 127147.
|
57 |
DONG Cheng, LI Ang, WANG Chen, et al. Engineering attractive interaction in ZIF-based phase change materials for boosting electro-and photo-driven thermal energy storage[J]. Chemical Engineering Journal, 2022, 430: 133007.
|