1 |
FRAZZICA A, MANZAN M, SAPIENZA A, et al. Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications[J]. Applied Energy, 2016, 183: 1157-1167.
|
2 |
王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494.
|
|
WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494.
|
3 |
WU S F, YAN T, KUAI Z H, et al. Preparation and thermal property analysis of a novel phase change heat storage material[J]. Renewable Energy, 2020, 150: 1057-1065.
|
4 |
WANG Z L, ZHANG H, DOU B, et al. Influence of inlet structure on thermal stratification in a heat storage tank with PCMs: CFD and experimental study[J]. Applied Thermal Engineering, 2019, 162: 114151.
|
5 |
FAN R J, ZHENG N B, SUN Z Q. Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120753.
|
6 |
RAMAGOUR M, BENNAJAH M, ADIL R. Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage[J]. Journal of Cleaner Production, 2020, 280: 124238.
|
7 |
陈岩, 叶宇轩, 杜文静. 泡沫金属在熔盐相变蓄热中的强化传热特性[J]. 化工进展, 2020, 39(7): 2566-2573.
|
|
CHEN Yan, YE Yuxuan, DU Wenjing. Heat transfer enhancement performance in phase change process of molten salt using foam metal[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2566-2573.
|
8 |
DINESH B, BHATTACHARYA A. Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions[J]. The Journal of Energy Storage, 2020, 28: 101190.
|
9 |
贺瑞军, 邹得球, 马先锋, 等. 基于碳纳米材料协同强化型复合相变材料的动力电池组传热特性[J]. 化工进展, 2018, 37(11): 4174-4180.
|
|
HE Ruijun, ZOU Deqiu, MA Xianfeng, et al. Heat transfer characteristics of power battery pack based on composite phase change material enhanced by synergistic of carbon nano-materials[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4174-4180.
|
10 |
REZAIE A B, MONTAZER M. In situ incorporation and loading of copper nanoparticles into a palmitic-lauric phase-change material on polyester fibers[J]. Journal of Applied Polymer Science, 2019, 136(3): 46951.
|
11 |
胡志培, 孙志高, 孟二林. 水平管壳式相变蓄热装置的强化传热研究[J]. 太阳能学报, 2021, 42(3): 450-455.
|
|
HU Zhipei, SUN Zhigao, MENG Erlin. Study on heat transfer enhancement of horizontal shell-and-tude latent heat thermal energy storge unit[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 450-455.
|
12 |
CHI P T, XIE Y Q, YU J Z, et al. Application of new type phase change energy storage devices on the refrigeration equipment[J]. Advanced Science Letters, 2012, 8: 588-593.
|
13 |
张涛, 余建祖, 高红霞. TPS法测定泡沫铜/石蜡复合相变材料热物性[J]. 太阳能学报, 2010, 31(5): 604-609.
|
|
ZHANG Tao, YU Jianzu, GAO Hongxia. Measurement of thermal parameters of copper-foam/paraffins composite PCM using transient plane source(TPS) method[J]. Acta energiae Solaris Sinica, 2010, 31(5): 604-609.
|
14 |
XIAO X, ZHANG P, LI M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105.
|
15 |
ZHAO Y, ZHAO C Y, XU Z G, et al. Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method[J]. International Journal of Heat & Mass Transfer, 2016, 99: 170-181.
|
16 |
程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007(7): 739-744.
|
|
CHEN Wenlong, WEI Wenjing. Theoretical analysis of phase change material storage with high porosity metal foams[J]. Acta Energiae Solaris Sinica, 2007(7): 739-744.
|
17 |
JAGJIWANRAM, RAMVIR S. Effective thermal conductivity of highly porous two-phase systems[J]. Applied Thermal Engineering, 2004, 24(17).
|
18 |
XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366.
|
19 |
XIAO X, ZHANG P, SHAO D D, et al. Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector[J]. Energy Conversion and Management, 2014, 86: 49-59.
|
20 |
HIRATA T, NISHIDA K. An analysis of heat transfer using equivalent thermal conductivity of liquid phase during melting inside an isothermally heated horizontal cylinder[J]. International Journal of Heat & Mass Transfer, 1989, 32(9): 1663-1670.
|
21 |
SILVA P D, GONCALVES L C, PIRES L. Transient behaviour of a latent-heat thermal-energy store: numerical and experimental studies[J]. Applied Energy, 2002, 73(1): 83-98.
|