1 |
APREA J L, BOLCICH J C. The energy transition towards hydrogen utilization for green life and sustainable human development in Patagonia[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25627-25645.
|
2 |
LAMICHANEY S, BARANWAL R, MAITRA S, et al. Clean energy technologies: hydrogen power and fuel cells[M]// Reference Module in Materials Science and Materials Engineering. Elsevier SciTech Connect, 2018: 366-371.
|
3 |
XIONG S S, SONG Q J, GUO B S, et al. Research and development of on-board hydrogen-producing fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17844-17857.
|
4 |
杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2021, 40(4): 1928-1947.
|
|
YANG Jie, CHANG Hui, SUI Zhijun, et al. Advances in chemical looping methane oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947.
|
5 |
罗明, 王树众, 王龙飞, 等. 基于化学链技术制氢的研究进展[J]. 化工进展, 2014, 33(5): 1123-1133.
|
|
LUO Ming, WANG Shuzhong, WANG Longfei, et al. Advances in hydrogen production using chemical-looping technology[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1123-1133.
|
6 |
TANG M C, XU L, FAN M H. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review[J]. Applied Energy, 2015, 151: 143-156.
|
7 |
曾亮, 巩金龙. 化学链重整直接制氢技术进展[J]. 化工学报, 2015, 66(8): 2854-2862.
|
|
ZENG Liang, GONG Jinlong. Advances in chemical looping reforming for direct hydrogen production[J]. CIESC Journal, 2015, 66(8): 2854-2862.
|
8 |
DE DIEGO L F, ORTIZ M, ADÁNEZ J, et al. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers[J]. Chemical Engineering Journal, 2008, 144(2): 289-298.
|
9 |
SILVESTER L, ANTZARA A, BOSKOVIC G, et al. NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam methane reforming[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7490-7501.
|
10 |
ZHU M, CHEN S Y, MA S W, et al. Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process[J]. Chemical Engineering Journal, 2017, 325: 322-331.
|
11 |
苏迎辉, 郑浩, 张磊, 等. LaMn1-x-yFexCoyO3-δ钙钛矿载氧体用于化学链部分氧化[J]. 化工学报, 2020, 71(11): 5265-5277.
|
|
SU Yinghui, ZHENG Hao, ZHANG Lei, et al. LaMn1-x-yFexCoyO3-δ perovskite based oxygen carriers for chemical looping partial oxidation[J]. CIESC Journal, 2020, 71(11): 5265-5277.
|
12 |
NALBANDIAN L, EVDOU A, ZASPALIS V. La1–xSrxMyFe1–yO3–δ perovskites as oxygen-carrier materials for chemical-looping reforming[J]. International Journal of Hydrogen Energy, 2011, 36(11): 6657-6670.
|
13 |
KUANG C, WANG S Z, LYU S, et al. Comparison of metallic oxide, natural ore and synthetic oxygen carrier in chemical looping combustion process[J]. International Journal of Hydrogen Energy, 2021, 46(34): 18032-18041.
|
14 |
ZHU X, SUN L Y, ZHENG Y N, et al. CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13381-13388.
|
15 |
ZHU X, WANG H, WEI Y G, et al. Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier[J]. Journal of Natural Gas Chemistry, 2011, 20(3): 281-286.
|
16 |
TIJANI M M, AQSHA A, MAHINPEY N. Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system[J]. Energy, 2017, 138: 873-882.
|
17 |
LIU F, CHEN L Y, NEATHERY J K, et al. Cerium oxide promoted iron-based oxygen carrier for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16341-16348.
|
18 |
张军伟, 黄戒介, 房倚天, 等. 铈修饰铁基复合载氧体用于化学链甲烷部分氧化重整制合成气研究[J]. 燃料化学学报, 2014, 42(2): 158-165.
|
|
ZHANG Junwei, HUANG Jiejie, FANG Yitian, et al. Partial oxidation reforming of methane to synthesis gas by chemical-looping using CeO2-modified Fe2O3 as oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2014, 42(2): 158-165.
|
19 |
GUERRERO-CABALLERO J, KANE T, HAIDAR N, et al. Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane[J]. Catalysis Today, 2019, 333: 251-258.
|
20 |
HE F, WEI Y G, LI H B, et al. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides[J]. Energy & Fuels, 2009, 23(4): 2095-2102.
|
21 |
ARAKI S, HINO N, MORI T, et al. Durability of a Ni based monolithic catalyst in the autothermal reforming of biogas[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4727-4734.
|
22 |
SHADMAN-YAZDI F, PETERSEN E E. Changing catalyst performance by varying the distribution of active catalyst within porous supports[J]. Chemical Engineering Science, 1972, 27(2): 227-237.
|
23 |
KESHAVARZ A R, SOLEIMANI M. Nano-sized Ni/(CaO)x-(Al2O3)y catalysts for steam pre-reforming of ethane and propane in natural gas: the role of CaO/Al2O3 ratio to enhance conversion efficiency and resistance to coke formation[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 1-10.
|
24 |
SILVA B C D, BASTOS P H C, ROBERTO B S JR, et al. Perovskite-type catalysts based on nickel applied in the oxy-CO2 reforming of CH4: effect of catalyst nature and operative conditions[J]. Catalysis Today, 2021, 369: 19-30.
|
25 |
LÖFBERG A, GUERRERO-CABALLERO J, KANE T, et al. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production[J]. Applied Catalysis B: Environmental, 2017, 212: 159-174.
|
26 |
GAO N B, HAN Y, QUAN C. Study on steam reforming of coal tar over NiCo/ceramic foam catalyst for hydrogen production: effect of Ni/Co ratio[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22170-22186.
|
27 |
ROMERO M D, CALLES J A, RODRÍGUEZ A. Influence of the preparation method and metal precursor compound on the bifunctional Ni/HZSM-5 catalysts[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3533-3540.
|
28 |
RAMASUBRAMANIAN V, RAMSURN H, PRICE G L. Hydrogen production by catalytic decomposition of methane over Fe based bi-metallic catalysts supported on CeO2-ZrO2[J]. International Journal of Hydrogen Energy, 2020, 45(21): 12026-12036.
|
29 |
LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chemical Society Reviews, 2014, 43(21): 7245-7256.
|
30 |
TROVARELLI A. Structural and oxygen storage/release properties of CeO2-based solid solutions[J]. Comments on Inorganic Chemistry, 1999, 20(4/5/6): 263-284.
|
31 |
TAO J, ZHAO L Q, DONG C Q, et al. Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni-CeO2/SBA-15 catalysts[J]. Energies, 2013, 6(7): 3284-3296.
|
32 |
ŚWIERCZYŃSKI D, LIBS S, COURSON C, et al. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound[J]. Applied Catalysis B: Environmental, 2007, 74(3/4): 211-222.
|