Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 192-200.DOI: 10.16085/j.issn.1000-6613.2021-0372
• Energy processes and technology • Previous Articles Next Articles
HAN Danhua(), GUO Xueyan(
), WANG Zhiyuan
Received:
2021-02-23
Revised:
2021-06-17
Online:
2022-01-24
Published:
2022-01-05
Contact:
GUO Xueyan
通讯作者:
郭雪岩
作者简介:
韩丹华(1994—),女,硕士研究生,研究方向为固定床化学链重整制氢技术。E-mail:CLC Number:
HAN Danhua, GUO Xueyan, WANG Zhiyuan. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 192-200.
韩丹华, 郭雪岩, 王志远. 化学链重整制氢NiO-CeO2/γ-Al2O3复合载氧体的性能[J]. 化工进展, 2022, 41(1): 192-200.
1 | APREA J L, BOLCICH J C. The energy transition towards hydrogen utilization for green life and sustainable human development in Patagonia[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25627-25645. |
2 | LAMICHANEY S, BARANWAL R, MAITRA S, et al. Clean energy technologies: hydrogen power and fuel cells[M]// Reference Module in Materials Science and Materials Engineering. Elsevier SciTech Connect, 2018: 366-371. |
3 | XIONG S S, SONG Q J, GUO B S, et al. Research and development of on-board hydrogen-producing fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17844-17857. |
4 | 杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2021, 40(4): 1928-1947. |
YANG Jie, CHANG Hui, SUI Zhijun, et al. Advances in chemical looping methane oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947. | |
5 | 罗明, 王树众, 王龙飞, 等. 基于化学链技术制氢的研究进展[J]. 化工进展, 2014, 33(5): 1123-1133. |
LUO Ming, WANG Shuzhong, WANG Longfei, et al. Advances in hydrogen production using chemical-looping technology[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1123-1133. | |
6 | TANG M C, XU L, FAN M H. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review[J]. Applied Energy, 2015, 151: 143-156. |
7 | 曾亮, 巩金龙. 化学链重整直接制氢技术进展[J]. 化工学报, 2015, 66(8): 2854-2862. |
ZENG Liang, GONG Jinlong. Advances in chemical looping reforming for direct hydrogen production[J]. CIESC Journal, 2015, 66(8): 2854-2862. | |
8 | DE DIEGO L F, ORTIZ M, ADÁNEZ J, et al. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers[J]. Chemical Engineering Journal, 2008, 144(2): 289-298. |
9 | SILVESTER L, ANTZARA A, BOSKOVIC G, et al. NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam methane reforming[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7490-7501. |
10 | ZHU M, CHEN S Y, MA S W, et al. Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process[J]. Chemical Engineering Journal, 2017, 325: 322-331. |
11 | 苏迎辉, 郑浩, 张磊, 等. LaMn1-x-yFexCoyO3-δ钙钛矿载氧体用于化学链部分氧化[J]. 化工学报, 2020, 71(11): 5265-5277. |
SU Yinghui, ZHENG Hao, ZHANG Lei, et al. LaMn1-x-yFexCoyO3-δ perovskite based oxygen carriers for chemical looping partial oxidation[J]. CIESC Journal, 2020, 71(11): 5265-5277. | |
12 | NALBANDIAN L, EVDOU A, ZASPALIS V. La1–xSrxMyFe1–yO3–δ perovskites as oxygen-carrier materials for chemical-looping reforming[J]. International Journal of Hydrogen Energy, 2011, 36(11): 6657-6670. |
13 | KUANG C, WANG S Z, LYU S, et al. Comparison of metallic oxide, natural ore and synthetic oxygen carrier in chemical looping combustion process[J]. International Journal of Hydrogen Energy, 2021, 46(34): 18032-18041. |
14 | ZHU X, SUN L Y, ZHENG Y N, et al. CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13381-13388. |
15 | ZHU X, WANG H, WEI Y G, et al. Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier[J]. Journal of Natural Gas Chemistry, 2011, 20(3): 281-286. |
16 | TIJANI M M, AQSHA A, MAHINPEY N. Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system[J]. Energy, 2017, 138: 873-882. |
17 | LIU F, CHEN L Y, NEATHERY J K, et al. Cerium oxide promoted iron-based oxygen carrier for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16341-16348. |
18 | 张军伟, 黄戒介, 房倚天, 等. 铈修饰铁基复合载氧体用于化学链甲烷部分氧化重整制合成气研究[J]. 燃料化学学报, 2014, 42(2): 158-165. |
ZHANG Junwei, HUANG Jiejie, FANG Yitian, et al. Partial oxidation reforming of methane to synthesis gas by chemical-looping using CeO2-modified Fe2O3 as oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2014, 42(2): 158-165. | |
19 | GUERRERO-CABALLERO J, KANE T, HAIDAR N, et al. Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane[J]. Catalysis Today, 2019, 333: 251-258. |
20 | HE F, WEI Y G, LI H B, et al. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides[J]. Energy & Fuels, 2009, 23(4): 2095-2102. |
21 | ARAKI S, HINO N, MORI T, et al. Durability of a Ni based monolithic catalyst in the autothermal reforming of biogas[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4727-4734. |
22 | SHADMAN-YAZDI F, PETERSEN E E. Changing catalyst performance by varying the distribution of active catalyst within porous supports[J]. Chemical Engineering Science, 1972, 27(2): 227-237. |
23 | KESHAVARZ A R, SOLEIMANI M. Nano-sized Ni/(CaO)x-(Al2O3)y catalysts for steam pre-reforming of ethane and propane in natural gas: the role of CaO/Al2O3 ratio to enhance conversion efficiency and resistance to coke formation[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 1-10. |
24 | SILVA B C D, BASTOS P H C, ROBERTO B S JR, et al. Perovskite-type catalysts based on nickel applied in the oxy-CO2 reforming of CH4: effect of catalyst nature and operative conditions[J]. Catalysis Today, 2021, 369: 19-30. |
25 | LÖFBERG A, GUERRERO-CABALLERO J, KANE T, et al. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production[J]. Applied Catalysis B: Environmental, 2017, 212: 159-174. |
26 | GAO N B, HAN Y, QUAN C. Study on steam reforming of coal tar over NiCo/ceramic foam catalyst for hydrogen production: effect of Ni/Co ratio[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22170-22186. |
27 | ROMERO M D, CALLES J A, RODRÍGUEZ A. Influence of the preparation method and metal precursor compound on the bifunctional Ni/HZSM-5 catalysts[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3533-3540. |
28 | RAMASUBRAMANIAN V, RAMSURN H, PRICE G L. Hydrogen production by catalytic decomposition of methane over Fe based bi-metallic catalysts supported on CeO2-ZrO2[J]. International Journal of Hydrogen Energy, 2020, 45(21): 12026-12036. |
29 | LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chemical Society Reviews, 2014, 43(21): 7245-7256. |
30 | TROVARELLI A. Structural and oxygen storage/release properties of CeO2-based solid solutions[J]. Comments on Inorganic Chemistry, 1999, 20(4/5/6): 263-284. |
31 | TAO J, ZHAO L Q, DONG C Q, et al. Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni-CeO2/SBA-15 catalysts[J]. Energies, 2013, 6(7): 3284-3296. |
32 | ŚWIERCZYŃSKI D, LIBS S, COURSON C, et al. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound[J]. Applied Catalysis B: Environmental, 2007, 74(3/4): 211-222. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[4] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[5] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[8] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[9] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[10] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[11] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[12] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[13] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[14] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[15] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 438
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 285
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |