Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 402-410.DOI: 10.16085/j.issn.1000-6613.2021-0493
• Resources and environmental engineering • Previous Articles Next Articles
FU Chenglin1,2(), WU Yonggang1,2(), HU Qian1,2, CHENG Yuhu1,2
Received:
2021-03-11
Revised:
2021-06-01
Online:
2021-11-12
Published:
2021-11-12
Contact:
WU Yonggang
付成林1,2(), 伍永钢1,2(), 胡谦1,2, 程玉虎1,2
通讯作者:
伍永钢
作者简介:
付成林(1995—),男,硕士研究生,研究方向为微生物电解池。E-mail:基金资助:
CLC Number:
FU Chenglin, WU Yonggang, HU Qian, CHENG Yuhu. Operation characteristics of MEC load with two different electrode materials for actual landfill leachate treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 402-410.
付成林, 伍永钢, 胡谦, 程玉虎. 负载两种不同电极材料MEC处理实际垃圾渗滤液的运行特性[J]. 化工进展, 2021, 40(S2): 402-410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0493
组分 | 范围 |
---|---|
化学需氧量/mg·L-1 | 858±45 |
氨氮/mg·L-1 | 270±13 |
总氮/mg·L-1 | 278±15 |
pH | 7.01±0.21 |
电导率/ms·cm-1 | 4.81±0.57 |
色度 | 653±28 |
浊度/NTU | 150.8±12.3 |
组分 | 范围 |
---|---|
化学需氧量/mg·L-1 | 858±45 |
氨氮/mg·L-1 | 270±13 |
总氮/mg·L-1 | 278±15 |
pH | 7.01±0.21 |
电导率/ms·cm-1 | 4.81±0.57 |
色度 | 653±28 |
浊度/NTU | 150.8±12.3 |
样品 | E254 | E365/ E 250 | E253/ E203 |
---|---|---|---|
进水 | 4.4883 | 0.4492 | 1.1127 |
A-MEC | 3.5236 | 0.5305 | 1.0045 |
B-MEC | 2.3662 | 0.4246 | 0.7979 |
样品 | E254 | E365/ E 250 | E253/ E203 |
---|---|---|---|
进水 | 4.4883 | 0.4492 | 1.1127 |
A-MEC | 3.5236 | 0.5305 | 1.0045 |
B-MEC | 2.3662 | 0.4246 | 0.7979 |
1 | 熊建英,郑正. 垃圾填埋场渗滤液溶解性有机质特性及其去除技术综述[J]. 环境化学, 2015, 34(1): 44-53. |
XIONG Jianying, ZHENG Zheng. Characteristics of the dissolved organic matter in landfill leachate and their removal technology: a review [J]. Environmental Chemistry, 2015, 34(1): 44-53. | |
2 | RENOU S, GIVANDAN J G, POULAIN S, et al. Landfill leachate treatment: review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3): 468-493. |
3 | 王志科,张兴,赵峥,等. 垃圾渗滤液处理方法研究进展[J]. 绿色科技, 2020(2): 113-116. |
WANG Zhike, ZHANG Xing, ZHAO Zheng, et al. Research progress of landfill leachate treatment[J]. Journal of Green Science and Technology, 2020(2): 113-116. | |
4 | LOGAN B E, CALL D, CHENG S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23): 8630-8640. |
5 | QIN B, LUO H, LIU G, et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresource Technology, 2012, 121: 458-461. |
6 | WAGNER R C, REGAN J M, OH S, et al. Hydrogen and methane production from swine wastewater using microbial electrolysis cells[J]. Water Research, 2009, 43(5): 1480-1488. |
7 | SHEN R, ZHAO L, LU J, et al. Treatment of recalcitrant wastewater and hydrogen production via microbial electrolysis cells[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(5): 179-189. |
8 | MAHMOUD M, PARAMESWARAN P, TORRES C I, et al. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell[J]. Bioresource Technology, 2014, 151: 151-158. |
9 | RANI G, NABI Z, RAJESH BANU J, et al. Batch fed single chambered microbial electrolysis cell for the treatment of landfill leachate[J]. Renewable Energy, 2020, 153: 168-174. |
10 | MANSOORIAN H J, MAHVI A, NABIZADEH R, et al. Evaluating the performance of coupled MFC-MEC with graphite felt/MWCNTs polyscale electrode in landfill leachate treatment, and bioelectricity and biogas production[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2): 1067-1082. |
11 | MAHMOUD M, TORRES C I, RITTMANN B E. Changes in glucose fermentation pathways as a response to the free ammonia concentration in microbial electrolysis cells[J]. Environmental Science & Technology, 2017, 51(22): 13461-13470. |
12 | 夏函青,伍永钢,付成林,等. 人工湿地-微生物电解池耦合系统的脱氮特性[J]. 化工进展, 2020, 39(11): 4677-4684. |
XIA Hanqing, WU Yonggang, FU Chenglin, et al. Nitrogen removal characteristics of the coupling system of constructed wetland and microbial electrolysis cell[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4677-4684 | |
13 | 王为,骆海萍,刘广立,等. 利用微生物电解池处理牛奶废水过程中产电菌落与产氢性能之间的关系[J]. 微生物学通报, 2013, 40(11): 2075-2082. |
WANG Wei, LUO Haiping, LIU Guangli, et al. Exoelectrogens community analysis and hydrogen production in the microbial electrolysis cell using dairy wastewater[J]. Microbiology China, 2013, 40(11): 2075-2082. | |
14 | 王晓洁,曾艺芳,张鹏帅,等. 外加电压对微生物电解池性能影响研究[J]. 海峡科学, 2017(10): 3-5. |
WANG Xiaojie, ZENG Yifang, ZHANG Pengshuai, et al. Study on the influence of applied voltage on the performance of microorganism electrolytic cell[J]. Straits Science, 2017(10): 3-5. | |
15 | 于瑞娟. BES处理尿液的影响因素及能源回收资源化研究[D].西安:陕西科技大学, 2019. |
YU Ruijuan. Study on the influencing factors and the resource of energy recovery of the urine treated by BES[D]. Xi’an: Shaanxi University of Science and Technology, 2019. | |
16 | LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14): 5488-5493. |
17 | FENG Q, XU L, LIU C, et al. Treatment of shale gas fracturing wastewater using microbial fuel cells: mixture of aging landfill leachate and traditional aerobic sludge as catholyte[J]. Journal of Cleaner Production, 2020, 269: 121776. |
18 | KARGI F, CATALKAYA E C. Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8252-8260. |
19 | LI X M, CHENG K Y, SELVAM A, et al. Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula[J]. Process Biochemistry, 2013, 48(2): 283-288. |
20 | HUI H, WANG H, MO Y, et al. A three-stage fixed-bed electrochemical reactor for biologically treated landfill leachate treatment[J]. Chemical Engineering Journal, 2019, 376: 121026. |
21 | 王凡. 采用ANAMMOX工艺系统处理中晚期垃圾渗滤液试验研究[D]. 苏州: 苏州科技大学, 2018. |
WANG Fan. Study on the ANAMMOX process system for the treatment of middle-late landfill leachate[D]. Suzhou:Suzhou University of Science and Technology, 2018. | |
22 | 孙翼虎,孙铁刚,李小明,等. 混凝+芬顿法对中晚期垃圾渗滤液色度去除[J]. 环境工程学报, 2013, 7(6): 2116-2120. |
SUN Yihu, SUN Tiegang, LI Xiaoming, et al. Color removal in aged landfill leachate by process of coagulation-flocculation and Fenton[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2116-2120. | |
23 | KANG K, SHIN H S, PARK H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16): 4023-4032. |
24 | 贾陈忠,刘松,张彩香,等. 光催化氧化降解垃圾渗滤液中溶解性有机物[J]. 环境工程学报, 2013, 7(2): 451-456. |
JIA Chenzhong, LIU Song, ZHANG Caixiang, et al. Degradation of dissolved organic matter in landfill leachate during photocatalytic treatment process[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 451-456. | |
25 | CLEMENT B, THOMAS O. Application of ultra-violet spectrophotometry and gel permeation chromatography to the characterization of landfill leachates[J]. Environmental Technology, 1995, 16(4): 367-377. |
26 | SHAO Z, HE P, ZHANG D, et al. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste[J]. Journal of Hazardous Materials, 2009, 164(2-3): 1191-1197. |
27 | KORSHIN G V, LI C, BENJAMIN M M. Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory[J]. Water Research, 1997, 31(7): 1787-1795. |
28 | LYGEROS J, KOUTROUMPAS K, DIMOPOULOS S, et al. Stochastic hybrid modeling of DNA replication across a complete genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12295-12300. |
29 | BAEK G, SAIKALY P E, LOGAN B E. Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application[J]. Water Research, 2021, 188: 116575. |
30 | PUIG S, SERRA M, COMA M, et al. Microbial fuel cell application in landfill leachate treatment[J]. Journal of Hazardous Materials, 2011, 185(2/3): 763-767. |
31 | 曹琳,雍晓雨,周俊,等. 以沼液为原料的微生物燃料电池产电降解特性[J]. 化工学报, 2014, 65(5): 1900-1905. |
CAO Lin, YONG Xiaoyu, ZHOU Jun, et al. Electrical and degradation characteristics of microbial fuel cell using biogas slurry as substrate[J]. CIESC Journal, 2014, 65(5): 1900-1905. | |
32 | 高岩,周北海,孙晨,等. 闲置厌氧氨氧化微生物的启动及微生物分析[J]. 环境保护科学, 2017, 43(5): 43-50. |
GAO Yan, ZHOU Beihai, SUN Chen, et al. Nitrogen removal performance of anammox biomass during the restarting after a long-term abandoning and microbial community analysis[J]. Environmental Protection Science, 2017, 43(5):43-50 | |
33 | LI C, PAN G, WANG X, et al. The effects of non-metallic organic tanning agents on the microbial community structure in wastewater[J]. Journal of Cleaner Production, 2021, 279: 123553. |
34 | 蔡丽云,黄泽彬,须子唯,等. 处理垃圾渗滤液的SBR中微生物种群与污泥比阻[J]. 环境科学, 2018, 39(2): 880-888. |
CAI Liyun, HUANG Zemin, XU Ziwei, et al. Microbial communities and sludge specific resistance in two SBR s treating leachate[J]. Environmental Science, 2018, 39(2): 880-888. | |
35 | PEREZ M C, ALVAREZ-HORNOS F J, ENGESER K H, et al. Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam[J]. New Biotechnology, 2016, 33(2): 263-272. |
36 | SAHEB ALAM S, PERSSON F, WILEN B M, et al. Response to starvation and microbial community composition in microbial fuel cells enriched on different electron donors[J]. Microbial Biotechnology, 2019, 12(5): 962-975. |
37 | SHANG L, ZHANG Z, YU Y, et al. Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis[J]. Environmental Science and Pollution Research, 2017, 24(16): 14387-14395. |
38 | PHAM T H, BOON N, AELTERMAN P, et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer[J]. Applied Microbiology and Biotechnology, 2008, 77(5): 1119-1129. |
[1] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[2] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[3] | HUANG Ye, YAN Xing, WU Qiaowei, CHAI Xiaotao, PAN Gongying, ZHANG Jinfeng, LI Xiangqian. Study of silica gel regeneration applied on cyclosporine A column chromatography [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 461-468. |
[4] | XU Pei, JIA Xuan, WANG Yong, QI Xuejiao, ZHAO Yujiao, LI Mingxiao. Effect of flow field on the CO2 reduction performance and products of MEC biocathode [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3816-3823. |
[5] | ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, XU Ling, ZHANG Hongning, ZHANG Xinying, XIE Li. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486. |
[6] | LI Xianxiu, HE Tao, MAO Jianwei, SHA Ruyi. Preparation and protein adsorption performance of charge-reduced poly(methacrylate)-grafted sepharose FF [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6038-6044. |
[7] | ZHU Jian, SHANG Xiaoyu, WANG Ying, ZHANG Xianming, CHEN Wenxing. Synthesis and properties of PET copolyester modified by spirocyclodiol [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6003-6010. |
[8] | WEN Jiawei, YANG Chenlin, CHENG Jianfeng, HUANG Guoyong, GUO Xueyi. Synthesis and properties of spinel type ternary high voltage cathode materials [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5968-5976. |
[9] | CUI Kun, HUANG Jin, ZHAO Qiaoling, MA Zhi. New progress in analysis and characterization of long chain branched structure in high melt strength polypropylene [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5425-5440. |
[10] | ZHANG Dashan, CHEN Huixian, MAO Linqiang, ZHANG Wenyi. Refining sludge treatment with alkaline inorganic salt and surfactant [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 468-475. |
[11] | YANG Ge, WANG Yonggang, YIN Jianan, LI Shouyi. Research progress in the determination of nitrogen compounds in mineral oil by gas chromatography-atomic emission detection [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 111-116. |
[12] | LIU Pengcheng, XU Sichuan. Experimental study on dynamic response performance for PEMFC stack [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3172-3180. |
[13] | KAN Yan, SUN Qian, LI Xiaoqiang, GAO Dekang. Colorimetric humidity sensor based on CoCl2/cellulose paper [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2703-2709. |
[14] | ZHAO Yu, LI Jia, YANG Donghua, WANG Gai, ZHANG Jie, WANG Yuxue. Preparation of MoS2/Y zeolite microbial electrolysis cell cathode material and its electrochemical properties [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2695-2702. |
[15] | XU Shichang, CUI Lanying, XIE Lixin, SU Libo. Evaporation and vapor absorption coupling method for landfill leachate treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2852-2858. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |