Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3172-3180.DOI: 10.16085/j.issn.1000-6613.2020-1327
• Energy processes and technology • Previous Articles Next Articles
Received:
2020-07-13
Revised:
2021-01-10
Online:
2021-06-22
Published:
2021-06-06
Contact:
XU Sichuan
通讯作者:
许思传
作者简介:
刘鹏程(1993—),男,博士研究生,主要研究方向为燃料电池冷启动。E-mail:基金资助:
CLC Number:
LIU Pengcheng, XU Sichuan. Experimental study on dynamic response performance for PEMFC stack[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3172-3180.
刘鹏程, 许思传. PEMFC电堆动态工况响应性能试验[J]. 化工进展, 2021, 40(6): 3172-3180.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1327
参数 | 值 | 参数 | 值 |
---|---|---|---|
单电池数量/片 | 30 | 扩散层孔隙率(阳/阴极) | 0.78/0.78 |
质子交换膜 | Nafion 211 | 扩散层厚度(阳/阴极)/mm | 0.17/0.17 |
有效反应截面积/cm2 | 270 | 双极板材料 | 316L不锈钢 |
催化层孔隙率(阳/阴极) | 0.5/0.5 | 双极板厚度/mm | 0.5 |
催化层厚度(阳/阴极)/mm | 0.005/0.01 | 端板厚度/mm | 25 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
单电池数量/片 | 30 | 扩散层孔隙率(阳/阴极) | 0.78/0.78 |
质子交换膜 | Nafion 211 | 扩散层厚度(阳/阴极)/mm | 0.17/0.17 |
有效反应截面积/cm2 | 270 | 双极板材料 | 316L不锈钢 |
催化层孔隙率(阳/阴极) | 0.5/0.5 | 双极板厚度/mm | 0.5 |
催化层厚度(阳/阴极)/mm | 0.005/0.01 | 端板厚度/mm | 25 |
1 | 刘灿, 许思传, 刘鹏程, 等.质子交换膜燃料电池停机吹扫研究进展[J]. 同济大学学报(自然科学版), 2019, 47(S1): 88-95. |
LIU C, XU S C, LIU P C, et al. Review of research progress on shutdown purge of proton exchange membrane fuel cell[J]. Journal of Tongji University (Natural Science), 2019, 47(S1): 88-95. | |
2 | 岳利可, 王世学, 李林军. 质子交换膜燃料电池冷启动研究进展[J]. 化工进展, 2017, 36(9): 3257-3265. |
YUE L K, WANG S X, LI L J. Research progress of cold start of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3257-3265. | |
3 | CHEN H C, PEI P C, SONG M C. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. |
4 | KIM Y B, KANG S J. Time delay control for fuel cells with bidirectional DC/DC converter and battery[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8792-8803. |
5 | TANG Y, YUAN W, PAN M Q, et al. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application [J]. Applied Energy, 2011, 88(1): 68-76. |
6 | WANG C Y. Fundamental models for fuel cell engineering[J]. Cheminform, 2004, 35(50): 4727-4766. |
7 | SHAN Y Y, CHOE S Y. A high dynamic PEM fuel cell model with temperature effects[J]. Journal of Power Sources, 2005, 145(1): 30-39. |
8 | ZHANG C, LIU Z, ZHOU W, et al. Dynamic performance of a high-temperature PEM fuel cell: an experimental study[J]. Energy, 2015, 90(2): 1949-1955. |
9 | LU L, XU H, ZHAO H, et al. Dynamic response performance of proton exchange membrane fuel cell stack with Pt/C-RuO2·xH2O electrode[J]. Journal of Power Sources, 2013, 242(15): 99-105. |
10 | 陈会翠.影响燃料电池寿命的动态响应分析及经济性评价[D]. 北京: 清华大学, 2015. |
CHEN H C. Analysis of the dynamic response affecting the fuel cell lifetime and economic evaluation of the fuel cell [D]. Beijing: Tsinghua University, 2015. | |
11 | CHO J, PARK J, OH H, et al. Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses[J]. Applied Energy, 2013, 111: 300-309. |
12 | 曹涛锋, 丁靖, 母玉同, 等. 质子交换膜燃料电池动态响应性能实验研究[J]. 工程热物理学报, 2016, 37(4): 835-839. |
CAO T F, DING J, MU Y T, et al. Experimental study on the dynamic performance of a proton exchange membrane fuel cell[J]. Journal of Engineering Thermophysics, 2016, 37(4): 835-839. | |
13 | CHO J, KIM H, MIN K. Transient response of a unit proton-exchange membrane fuel cell under various operating conditions[J]. Journal of Power Sources, 2008, 185(1): 118-128. |
14 | 王诚,毛宗强,谢晓峰,等.PEM燃料电池堆动态特性研究[J].化工学报, 2004, 55(S1): 245-248. |
WANG C, MAO Z Q, XIE X F, et al. Dynamic characteristics of PEM fuel cell stack[J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 245-248. | |
15 | KIM M S, KIM D K. Parametric study on dynamic heat and mass transfer response in polymer electrolyte membrane fuel cell for automotive applications[J]. Applied Thermal Engineering, 2020, 167: 114729-114740. |
16 | 华周发, 余意, 潘牧. 动态响应对质子交换膜燃料电池性能影响研究[J]. 电源技术, 2011, 35(11): 1358-1360. |
HUA Z F, YU Y, PAN M. Effect of dynamic response on performance of proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2011, 35(11): 1358-1360. | |
17 | KIM B, CHA D, KIM Y. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions[J]. Applied Energy, 2015, 138: 143-149. |
18 | TANG Y, YUAN W, PAN M Q, et al. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes[J]. Applied Energy, 2010, 87(4): 1410-1417. |
19 | 张竹茜, 贾力. 质子交换膜燃料电池动态特性实验研究[J]. 工程热物理学报, 2009, 30(8): 1399-1401. |
ZHANG Z Q, JIA L. Experimental study of PEM fuel cell dynamic behavior[J]. Journal of Engineering Thermophysics, 2009, 30(8): 1399-1401. | |
20 | 陈会翠,裴普成.质子交换膜(PEM)燃料电池变载过程动态模型[J].清华大学学报(自然科学版), 2014, 54(10): 1298-1303. |
CHEN H C, PEI P C. Dynamic model of a proton exchange membrane(PEM) fuel cell during load changes[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(10): 1298-1303. | |
21 | HE Y X, CHEN H C, QU B W, et al. Analysis of proton exchange membrane fuel cell reactant gas dynamic response and distribution quality[J]. Energy Procedia, 2018, 152: 667-672. |
22 | CORBO P, MIGLIARDINI F, VENERI O. An experimental study of a PEM fuel cell power train for urban bus application[J]. Journal of Power Sources, 2008, 181(2): 363-370. |
23 | OHEDA B, OMAR S C, CHAI A, et al. Experimental analysis of the dynamic performance of pem fuel cell under various load changes[C]//2010 International Conference on Mechanical and Electrical Technology (ICMET 2010), Singapore: IEEE, 2010: 604-609. |
24 | MOHAMED W A N W, TALIB S F A, ZAKARIA I A, et al. Effect of dynamic load on the temperature profiles and cooling response time of a proton exchange membrane fuel cell[J]. Journal of the Energy Institute, 2018, 91(3): 349-357. |
25 | 华周发.质子交换膜燃料电池动态响应研究[D].武汉: 武汉理工大学, 2010. |
HUA Z F. Study on dynamic response of proton exchange membrane fuel cell[D]. Wuhan: WuhanUniversity of Technology, 2010. | |
26 | WANG X K, WANG S B, ChEN S T, et al. Dynamic response of proton exchange membrane fuel cell under mechanical vibration[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16287-16295. |
27 | LIN R, LI B, HOU Y P, et al. Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2369-2376. |
28 | LIN R, XIONG F, TANG W C, et al. Investigation of dynamic driving cycle effect on the degradation of proton exchange membrane fuel cell by segmented cell technology[J]. Journal of Power Sources, 2014, 260: 150-158. |
29 | 汪飞杰, 杨代军, 张浩, 等. 1.5kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386. |
WANG F J, YANG D J, ZHANG H, et al. Response feature of a 1.5kW proton exchange membrane fuel cell stack for dynamic cycle[J]. CIESC Journal, 2013, 64(4): 1380-1386. | |
30 | HOU Y P, YANG Z H, FANG X. An experimental study on the dynamic process of PEM fuel cell stack voltage[J]. Renewable Energy, 2011, 36(1): 325-329. |
31 | JIAN Q F, ZHAO Y, WANG H T. An experimental study of the dynamic behavior of a 2kW proton exchange membrane fuel cell stack under various loading conditions[J]. Energy, 2015, 80: 740-745. |
32 | CHO J, KIM H, MIN K. Transient response of a unit proton-exchange membrane fuel cell under various operating conditions[J]. Journal of Power Sources, 2008, 185(1): 118-128. |
33 | JUNG G B, LO K F, SU A, et al. Experimental evaluation of an ambient forced-feed air-supply PEM fuel cell[J]. International Journal of Hydrogen Energy, 2008, 33(12): 2980-2985. |
34 | O’Hayre RYAN. 燃料电池基础[M]. 王晓红, 黄宏, 等, 译. 北京: 电子工业出版社, 2007: 32. |
O’Hayre RYAN. Fuel cell fundamentals[M]. WANG X H, HUANG H, et al. Trans. Beijing: Publishing House of Electronics Industry, 2007: 32. | |
35 | MIGLIARDINI F, PALMA T M D, GAELE M F, et al. Cell voltage analysis of a 6kW polymeric electrolyte fuel cell stack designed for hybrid power systems [J]. Materials Today: Proceedings, 2019, 10(2): 393-399. |
36 | HOU Y P, YANG Z H, WAN G. An improved dynamic voltage model of PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11154-11160. |
[1] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[4] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[5] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[6] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
[7] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[8] | CHEN Zhekun, PAN Weitong, YAO Dingsong, DING Lu, WANG Fuchen. Microstructure and rheology of microporous layer ink for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3808-3815. |
[9] | PAN Wenzheng, JI Zhiyong, WANG Jing, LI Shuming, HUANG Zhihui, GUO Xiaofu, LIU Jie, ZHAO Yingying, YUAN Junsheng. Research on the electricity production performance and degradation process of microbial fuel cell treating azo-dye saline wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3306-3313. |
[10] | GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. |
[11] | ZHANG Dong, ZHANG Rui, ZHANG Bin, AN Zhoujian, LEI Che. Research progress of combined cooling-heat-and-power systems based on PEMFC [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1608-1621. |
[12] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
[13] | FENG Zhanxiong, WANG Yun, MA Qiang, ZHANG Chuang, WANG Cheng. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6377-6384. |
[14] | DU Xin, FAN Jinwei, GUO Lijun, WANG Jinlong. Simulation of fuel cell aging process with heterogeneous agglomerate model [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5755-5760. |
[15] | WANG Meng, LIU Lili, LI Na, HU Zhaoxia, CHEN Shouwen. Preparation and properties of sulfonate modification nano-diamonds doped sulfonated poly(aryl ether sulfone) proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5645-5652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |