Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5968-5976.DOI: 10.16085/j.issn.1000-6613.2022-0924

• Materials science and technology • Previous Articles     Next Articles

Synthesis and properties of spinel type ternary high voltage cathode materials

WEN Jiawei1(), YANG Chenlin2, CHENG Jianfeng1, HUANG Guoyong1(), GUO Xueyi2()   

  1. 1.College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
    2.School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
  • Received:2022-05-19 Revised:2022-06-26 Online:2022-11-28 Published:2022-11-25
  • Contact: HUANG Guoyong, GUO Xueyi

尖晶石型三元高电压正极材料的合成及其性能

温嘉玮1(), 杨晨林2, 成建凤1, 黄国勇1(), 郭学益2()   

  1. 1.中国石油大学(北京)新能源与材料学院,北京 102249
    2.中南大学冶金与环境学院,湖南 长沙 410083
  • 通讯作者: 黄国勇,郭学益
  • 作者简介:温嘉玮(1992—),女,博士,副教授,研究方向为金属资源循环和增值利用。E-mail:wenjiawei1992@cup.edu.cn
  • 基金资助:
    国家自然科学基金(52022109);中国石油大学(北京)科研基金(2462021QNX2010);国家重点研发计划(2021YFC2901100)

Abstract:

LiNi0.5Mn1.5O4(LNMO) is a promising cathode material for the next generation of high energy density lithium ion batteries. However, the serious manganese ion dissolution and rapid capacity degradation impede their practical application. Here, ternary spinel type high voltage cathode material LiNi0.4Co0.1Mn1.5O4(LNCMO) was synthesized by hydrothermal-calcination method. The calcination temperature and heating rate were optimized and investigated. The sample was uniform rhomboid-like morphology feature with pure structure. The specific surface area of the sample was 3.72m2/g and the average pore size was 11.60nm. The discharge voltage of LNCMO was close to 4.75V, and the initial specific capacity was about 143.90mAh/g, which was close to the theoretical specific capacity of LNCMO(146.70mAh/g). According to the XRD and XPS results, the proportion of Mn4+ was higher than that of Mn3+ in this sample. At the same time, appropriate calcination temperature and heating rate could avoid the formation of Li x Ni1-x O impurity phase, and thus the structural stability was higher, the charge transfer resistance was lower and the electrical performance was better of this sample. Comparing the XRD and SEM results of cathode materials before and after the cycle, the phase was basically the same, but the morphology and structure collapse was serious under high current density, which limited the cycle stability. This paper provided an effective strategy for preparing ternary high voltage materials for higher capacity and discharge voltage.

Key words: lithium ion battery, cathode, composites, high voltage, LiNi0.4Co0.1Mn1.5O4

摘要:

LiNi0.5Mn1.5O4(LNMO)是一种有前景的下一代高能密度锂离子电池正极材料,但其中的锰离子溶解严重、容量衰减严重,阻碍了其应用。本工作通过水热-煅烧合成了LiNi0.4Co0.1Mn1.5O4(LNCMO)三元尖晶石型高电压复合材料,探究了煅烧温度和升温速率等制备条件对样品形貌和结构的影响。本文合成的LNCMO样品微观形貌呈类菱形结构,物相纯净,比表面积为3.72m2/g,平均孔径为11.60nm,放电电压接近4.75V,在20mA/g下初始放电比容量达143.90mAh/g,和LNCMO的理论比容量(146.71mAh/g)的比值达98%。根据XRD和XPS等表征分析可知,复合材料中的Mn4+比例较大,Mn3+较少,且合适的煅烧温度和升温速率避免了Li x Ni1-x O杂质相的生成,因此本文制备的材料相比LNMO材料结构稳定性增强,电荷转移阻力低,电性能尤其是比容量大幅提升。本文还对比了循环前后的样品,发现其物相基本一致,但高电流密度下形貌结构坍塌严重,影响了循环稳定性。本研究提供了一种有效制备三元高电压材料的策略。

关键词: 锂离子电池, 正极, 复合材料, 高电压, LiNi0.4Co0.1Mn1.5O4

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd