Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 468-475.DOI: 10.16085/j.issn.1000-6613.2021-0364
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Dashan(), CHEN Huixian, MAO Linqiang, ZHANG Wenyi()
Received:
2021-02-22
Revised:
2021-04-01
Online:
2022-01-24
Published:
2022-01-05
Contact:
ZHANG Wenyi
通讯作者:
张文艺
作者简介:
张大山(1995—),男,硕士研究生,研究方向为固废资源化等。E-mail:基金资助:
CLC Number:
ZHANG Dashan, CHEN Huixian, MAO Linqiang, ZHANG Wenyi. Refining sludge treatment with alkaline inorganic salt and surfactant[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 468-475.
张大山, 陈慧娴, 毛林强, 张文艺. 碱性无机盐-表面活性剂协同处理炼化油泥[J]. 化工进展, 2022, 41(1): 468-475.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0364
药剂 | 英文缩写 | 规格 | 类型 |
---|---|---|---|
失水酸梨醇单油酸酯聚氧乙烯醚 | Tween | 分析纯 | 阳离子表面活性剂 |
十二烷基二甲苯芐基氯化铵 | CAS | 分析纯 | 阳离子表面活性剂 |
十六烷基三甲基氯化铵 | CTAC | 分析纯 | 阳离子表面活性剂 |
十二烷基苯磺酸钠 | LAS | 分析纯 | 阴离子表面活性剂 |
脂肪醇聚氧乙烯醚硫酸钠 | AES | 分析纯 | 阴离子表面活性剂 |
聚丙烯酰胺 | PAM | 分析纯 | 阴离子表面活性剂 |
辛基酚聚氧乙烯醚 | OP-10 | 分析纯 | 非离子表面活性剂 |
烷基酚聚氧乙烯醚 | APEO | 分析纯 | 非离子表面活性剂 |
碳酸钠 | Na2CO3 | 分析纯 | 碱性无机盐 |
磷酸钠 | Na3PO4 | 分析纯 | 碱性无机盐 |
硅酸钠 | Na2SiO3 | 分析纯 | 碱性无机盐 |
药剂 | 英文缩写 | 规格 | 类型 |
---|---|---|---|
失水酸梨醇单油酸酯聚氧乙烯醚 | Tween | 分析纯 | 阳离子表面活性剂 |
十二烷基二甲苯芐基氯化铵 | CAS | 分析纯 | 阳离子表面活性剂 |
十六烷基三甲基氯化铵 | CTAC | 分析纯 | 阳离子表面活性剂 |
十二烷基苯磺酸钠 | LAS | 分析纯 | 阴离子表面活性剂 |
脂肪醇聚氧乙烯醚硫酸钠 | AES | 分析纯 | 阴离子表面活性剂 |
聚丙烯酰胺 | PAM | 分析纯 | 阴离子表面活性剂 |
辛基酚聚氧乙烯醚 | OP-10 | 分析纯 | 非离子表面活性剂 |
烷基酚聚氧乙烯醚 | APEO | 分析纯 | 非离子表面活性剂 |
碳酸钠 | Na2CO3 | 分析纯 | 碱性无机盐 |
磷酸钠 | Na3PO4 | 分析纯 | 碱性无机盐 |
硅酸钠 | Na2SiO3 | 分析纯 | 碱性无机盐 |
序号 | 复配药剂 | 表面活性剂组合类型 | 界面张力/mN·m-1 | 除油率% |
---|---|---|---|---|
1 | Na2SiO3+LAS+OP-10 | 阴离子型+非离子型 | 32.9 | 54.95 |
2 | Na2SiO3+AES+OP-10 | 阴离子型+非离子型 | 29.9 | 58.20 |
3 | Na2SiO3+PAM+OP-10 | 阴离子型+非离子型 | 32.2 | 55.71 |
4 | Na2SiO3+LAS+APEO | 阴离子型+非离子型 | 39.6 | 47.55 |
5 | Na2SiO3+AES+APEO | 阴离子型+非离子型 | 40.3 | 46.83 |
6 | Na2SiO3+PAM+APEO | 阴离子型+非离子型 | 54.5 | 31.18 |
7 | Na2SiO3+Tween+OP-10 | 阳离子型+非离子型 | 39.1 | 48.19 |
8 | Na2SiO3+CAS+OP-10 | 阳离子型+非离子型 | 34.0 | 53.72 |
9 | Na2SiO3+CTAC+OP-10 | 阳离子型+非离子型 | 37.9 | 49.42 |
10 | Na2SiO3+Tween+APEO | 阳离子型+非离子型 | 35.3 | 52.31 |
11 | Na2SiO3+CAS+APEO | 阳离子型+非离子型 | 43.4 | 43.32 |
12 | Na2SiO3+CTAC+APEO | 阳离子型+非离子型 | 42.4 | 44.41 |
序号 | 复配药剂 | 表面活性剂组合类型 | 界面张力/mN·m-1 | 除油率% |
---|---|---|---|---|
1 | Na2SiO3+LAS+OP-10 | 阴离子型+非离子型 | 32.9 | 54.95 |
2 | Na2SiO3+AES+OP-10 | 阴离子型+非离子型 | 29.9 | 58.20 |
3 | Na2SiO3+PAM+OP-10 | 阴离子型+非离子型 | 32.2 | 55.71 |
4 | Na2SiO3+LAS+APEO | 阴离子型+非离子型 | 39.6 | 47.55 |
5 | Na2SiO3+AES+APEO | 阴离子型+非离子型 | 40.3 | 46.83 |
6 | Na2SiO3+PAM+APEO | 阴离子型+非离子型 | 54.5 | 31.18 |
7 | Na2SiO3+Tween+OP-10 | 阳离子型+非离子型 | 39.1 | 48.19 |
8 | Na2SiO3+CAS+OP-10 | 阳离子型+非离子型 | 34.0 | 53.72 |
9 | Na2SiO3+CTAC+OP-10 | 阳离子型+非离子型 | 37.9 | 49.42 |
10 | Na2SiO3+Tween+APEO | 阳离子型+非离子型 | 35.3 | 52.31 |
11 | Na2SiO3+CAS+APEO | 阳离子型+非离子型 | 43.4 | 43.32 |
12 | Na2SiO3+CTAC+APEO | 阳离子型+非离子型 | 42.4 | 44.41 |
水平 | 因素 | ||||
---|---|---|---|---|---|
热洗温度 /℃ | 热洗时间 /min | 泥液比 | 药剂浓度 /g·L-1 | 搅拌速率 /r·min-1 | |
1 | 50 | 20 | 1∶4 | 1 | 100 |
2 | 60 | 30 | 1∶5 | 2 | 200 |
3 | 70 | 40 | 1∶6 | 3 | 300 |
4 | 80 | 50 | 1∶7 | 4 | 400 |
5 | 90 | 60 | 1∶8 | 5 | 500 |
水平 | 因素 | ||||
---|---|---|---|---|---|
热洗温度 /℃ | 热洗时间 /min | 泥液比 | 药剂浓度 /g·L-1 | 搅拌速率 /r·min-1 | |
1 | 50 | 20 | 1∶4 | 1 | 100 |
2 | 60 | 30 | 1∶5 | 2 | 200 |
3 | 70 | 40 | 1∶6 | 3 | 300 |
4 | 80 | 50 | 1∶7 | 4 | 400 |
5 | 90 | 60 | 1∶8 | 5 | 500 |
序号 | 因素 | 除油率/% | ||||
---|---|---|---|---|---|---|
热洗温度/℃ | 热洗时间/min | 泥液比 | 药剂浓度/g·L-1 | 搅拌速率/r·min-1 | ||
1 | 50 | 20 | 1∶4 | 1 | 100 | 40.62 |
2 | 50 | 30 | 1∶5 | 2 | 200 | 56.25 |
3 | 50 | 40 | 1∶6 | 3 | 300 | 59.21 |
4 | 50 | 50 | 1∶7 | 4 | 400 | 53.15 |
5 | 50 | 60 | 1∶8 | 5 | 500 | 52.22 |
6 | 60 | 20 | 1∶5 | 3 | 400 | 51.48 |
7 | 60 | 30 | 1∶6 | 4 | 500 | 50.12 |
8 | 60 | 40 | 1∶7 | 5 | 100 | 54.29 |
9 | 60 | 50 | 1∶8 | 1 | 200 | 49.11 |
10 | 60 | 60 | 1∶4 | 2 | 300 | 48.97 |
11 | 70 | 20 | 1∶6 | 5 | 200 | 53.38 |
12 | 70 | 30 | 1∶7 | 1 | 300 | 42.38 |
13 | 70 | 40 | 1∶8 | 2 | 400 | 43.32 |
14 | 70 | 50 | 1∶4 | 3 | 500 | 56.72 |
15 | 70 | 60 | 1∶5 | 4 | 100 | 66.90 |
16 | 80 | 20 | 1∶7 | 2 | 500 | 55.91 |
17 | 80 | 30 | 1∶8 | 3 | 100 | 63.15 |
18 | 80 | 40 | 1∶4 | 4 | 200 | 60.73 |
19 | 80 | 50 | 1∶5 | 5 | 300 | 66.07 |
20 | 80 | 60 | 1∶6 | 1 | 400 | 55.75 |
21 | 90 | 20 | 1∶8 | 4 | 300 | 52.83 |
22 | 90 | 30 | 1∶4 | 5 | 400 | 57.76 |
23 | 90 | 40 | 1∶5 | 1 | 500 | 53.42 |
24 | 90 | 50 | 1∶6 | 2 | 100 | 56.55 |
25 | 90 | 60 | 1∶7 | 3 | 200 | 68.80 |
均值k1 | 52.29 | 50.84 | 52.96 | 48.26 | 56.30 | — |
均值k2 | 50.79 | 53.93 | 58.82 | 52.20 | 57.65 | — |
均值k3 | 52.54 | 54.19 | 55.00 | 59.87 | 53.89 | — |
均值k4 | 60.32 | 56.32 | 54.91 | 56.75 | 52.29 | — |
均值k5 | 57.87 | 58.53 | 52.12 | 56.74 | 53.68 | — |
极差 | 9.53 | 7.69 | 6.70 | 11.61 | 5.36 | — |
序号 | 因素 | 除油率/% | ||||
---|---|---|---|---|---|---|
热洗温度/℃ | 热洗时间/min | 泥液比 | 药剂浓度/g·L-1 | 搅拌速率/r·min-1 | ||
1 | 50 | 20 | 1∶4 | 1 | 100 | 40.62 |
2 | 50 | 30 | 1∶5 | 2 | 200 | 56.25 |
3 | 50 | 40 | 1∶6 | 3 | 300 | 59.21 |
4 | 50 | 50 | 1∶7 | 4 | 400 | 53.15 |
5 | 50 | 60 | 1∶8 | 5 | 500 | 52.22 |
6 | 60 | 20 | 1∶5 | 3 | 400 | 51.48 |
7 | 60 | 30 | 1∶6 | 4 | 500 | 50.12 |
8 | 60 | 40 | 1∶7 | 5 | 100 | 54.29 |
9 | 60 | 50 | 1∶8 | 1 | 200 | 49.11 |
10 | 60 | 60 | 1∶4 | 2 | 300 | 48.97 |
11 | 70 | 20 | 1∶6 | 5 | 200 | 53.38 |
12 | 70 | 30 | 1∶7 | 1 | 300 | 42.38 |
13 | 70 | 40 | 1∶8 | 2 | 400 | 43.32 |
14 | 70 | 50 | 1∶4 | 3 | 500 | 56.72 |
15 | 70 | 60 | 1∶5 | 4 | 100 | 66.90 |
16 | 80 | 20 | 1∶7 | 2 | 500 | 55.91 |
17 | 80 | 30 | 1∶8 | 3 | 100 | 63.15 |
18 | 80 | 40 | 1∶4 | 4 | 200 | 60.73 |
19 | 80 | 50 | 1∶5 | 5 | 300 | 66.07 |
20 | 80 | 60 | 1∶6 | 1 | 400 | 55.75 |
21 | 90 | 20 | 1∶8 | 4 | 300 | 52.83 |
22 | 90 | 30 | 1∶4 | 5 | 400 | 57.76 |
23 | 90 | 40 | 1∶5 | 1 | 500 | 53.42 |
24 | 90 | 50 | 1∶6 | 2 | 100 | 56.55 |
25 | 90 | 60 | 1∶7 | 3 | 200 | 68.80 |
均值k1 | 52.29 | 50.84 | 52.96 | 48.26 | 56.30 | — |
均值k2 | 50.79 | 53.93 | 58.82 | 52.20 | 57.65 | — |
均值k3 | 52.54 | 54.19 | 55.00 | 59.87 | 53.89 | — |
均值k4 | 60.32 | 56.32 | 54.91 | 56.75 | 52.29 | — |
均值k5 | 57.87 | 58.53 | 52.12 | 56.74 | 53.68 | — |
极差 | 9.53 | 7.69 | 6.70 | 11.61 | 5.36 | — |
1 | 陈忠喜. 含油污泥处理工艺技术现状及其展望[J]. 油气田地面工程, 2020, 39(10): 1-7. |
CHEN Zhongxi. Present situation and prospect of oily sludge treatment technology[J]. Oil-Gas Field Surface Engineering, 2020, 39(10): 1-7. | |
2 | REN H Y, ZHOU S Y, WANG B, et al. Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124117. |
3 | LI Y, CHEN X, WANG Y H, et al. Application of chemical hot washing method for oily solid waste treatment[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199: 042040. |
4 | 宋相和, 纪怡璞. 干化-焚烧联运技术在含油污泥处理中的应用[J]. 安全、健康和环境, 2020, 20(6): 22-26. |
SONG Xianghe, JI Yipu. Application of drying-incineration combined technology in oily sludge treatment[J]. Safety Health & Environment, 2020, 20(6): 22-26. | |
5 | SIVAGAMI K, TAMIZHDURAI P, MUJAHED S, et al. Process optimization for the recovery of oil from tank bottom sludge using microwave pyrolysis[J]. Process Safety and Environmental Protection, 2021, 148: 392-399. |
6 | KE C Y, QIN F L, YANG Z G, et al. Bioremediation of oily sludge by solid complex bacterial agent with a combined two-step process[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111673. |
7 | OBI L, ATAGANA H, ADELEKE R, et al. Potential microbial drivers of biodegradation of polycyclic aromatic hydrocarbons in crude oil sludge using a composting technique[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(5): 1569-1579. |
8 | TENG Q, ZHANG D M, YANG C P. A review of the application of different treatment processes for oily sludge[J]. Environmental Science and Pollution Research, 2021, 28(1): 121-132. |
9 | 白羽, 程远鹏, 胡九江, 等. 含油污泥热清洗处理技术研究现状与展望[J]. 应用化工, 2020, 49(6): 1498-1501, 1507. |
BAI Yu, CHENG Yuanpeng, HU Jiujiang, et al. Progress and prospects of thermal cleaning and treatment of oily sludge[J]. Applied Chemical Industry, 2020, 49(6): 1498-1501, 1507. | |
10 | 陈红硕, 刘佳驹, 付正辉, 等. 热化学清洗-逆流提取联合处理高含油含聚油泥工艺试验[J]. 环境工程技术学报, 2019, 9(3): 294-301. |
CHEN Hongshuo, LIU Jiaju, FU Zhenghui, et al. Experimental study on treatment of high-oil sludge containing polymer by thermochemical cleaning and countercurrent extraction[J]. Journal of Environmental Engineering Technology, 2019, 9(3): 294-301. | |
11 | RAMIREZ D, SHAW L J, COLLINS C D. Oil sludge washing with surfactants and co-solvents: oil recovery from different types of oil sludges[J]. Environmental Science and Pollution Research, 2021, 28(5): 5867-5879. |
12 | 姜勇, 赵萍, 董铁有, 等. 含油污泥油含量测定方法[J]. 环境科学与管理, 2008, 33(2): 115-117. |
JIANG Yong, ZHAO Ping, DONG Tieyou, et al. Determination methods for oil concentration in the oily sludge[J]. Environmental Science and Management, 2008, 33(2): 115-117. | |
13 | 焦龙, 程超, 闫昕, 等. 表面活性剂-碱协同处理老化油泥工艺[J]. 油田化学, 2019, 36(3): 535-539. |
JIAO Long, CHENG Chao, YAN Xin, et al. Study on synergistic treatment of aged oil sludge with surfactant and alkali[J]. Oilfield Chemistry, 2019, 36(3): 535-539. | |
14 | 王开泉. 几种表面活性剂对不同油污清洗能力的对比[J]. 中国洗涤用品工业, 2018(9): 60-65. |
WANG Kaiquan. A comparative study on the oil cleaning performance of several surfactants[J]. China Cleaning Industry, 2018(9): 60-65. | |
15 | 黄朝琦, 秦志文, 尚绪敏, 等. 含油污泥化学热洗的药剂配方及工艺优化[J]. 化工进展, 2020, 39(4): 1478-1484. |
HUANG Zhaoqi, QIN Zhiwen, SHANG Xumin, et al. Formulation and process optimization of chemical thermal washing of oily sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1478-1484. | |
16 | TACKIE-OTOO B N, AYOUB MOHAMMED M A, YEKEEN N, et al. Alternative chemical agents for alkalis, surfactants and polymers for enhanced oil recovery: research trend and prospects[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106828. |
17 | 王鹏, 刘金河, 耿春香, 等. 新疆风城油砂水洗分离研究[J]. 广东化工, 2017, 44(1): 1-2, 8. |
WANG Peng, LIU Jinhe, GENG Chunxiang, et al. Hot water extraction of Fengcheng Xinjiang oil sands[J]. Guangdong Chemical Industry, 2017, 44(1): 1-2, 8. | |
18 | 张海燕, 陈光莹, 张海波, 等. 碱与表面活性剂在油水界面上的协同作用[J]. 湖南大学学报(自然科学版), 2016, 43(6): 93-98. |
ZHANG Haiyan, CHEN Guangying, ZHANG Haibo, et al. Synergism between alkali and surfactant at oil/water interface[J]. Journal of Hunan University (Natural Sciences), 2016, 43(6): 93-98. | |
19 | SUN X Y, ZENG H B, TANG T. Effect of non-ionic surfactants on the adsorption of polycyclic aromatic compounds at water/oil interface: a molecular simulation study[J]. Journal of Colloid and Interface Science, 2021, 586: 766-777. |
20 | AHMADI M A, SHADIZADEH S R. Spotlight on the new natural surfactant flooding in carbonate rock samples in low salinity condition[J]. Scientific Reports, 2018, 8: 10985. |
21 | 刁潘, 刘静, 张永奎, 等. 阴离子/非离子表面活性剂体系洗涤含油污泥[J]. 化工进展, 2014, 33(10): 2753-2757. |
DIAO Pan, LIU Jing, ZHANG Yongkui, et al. Experiment on enhanced washing of oily sludge by anionic/nonionic mixed surfactant[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2753-2757. | |
22 | XU B. Influencing factors governing paraffin wax deposition of heavy oil and research on wellbore paraffin remover[J]. Petroleum Science and Technology, 2018, 36(20): 1635-1641. |
23 | LIU J W, WEI K H, XU S W, et al. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: a review[J]. Science of the Total Environment, 2021, 756: 144142. |
24 | 张玉才, 艾力江·吐尔地, 孙艳美, 等. 聚醚有机硅表面活性剂的制备及对油污的清洗作用研究[J]. 中国胶粘剂, 2020, 29(11): 26-30. |
ZHANG Yucai, AILIJIANG Tuerdi, SUN Yanmei, et al. Preparation of polyether organosilicon surfactant and its cleaning effect on oil stain[J]. China Adhesives, 2020, 29(11): 26-30. | |
25 | 蔡烈刚, 沈婷, 李智民, 等. 原位生物修复过程中石油烃降解特征研究[J]. 资源环境与工程, 2018, 32(4): 606-610. |
CAI Liegang, SHEN Ting, LI Zhimin, et al. Study on degradation characteristics of petroleum hydrocarbons during in situ bioremediation[J]. Resources Environment & Engineering, 2018, 32(4): 606-610. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[3] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
[4] | WANG Yixing, YANG Jingyi, HU Chunfu, XU Xinru. Synthesis and performance of YM series demulsifiers in high-efficiency separation of SAGD heavy oil production liquid [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 382-390. |
[5] | XU Bo, JIANG Guobin, YU Jinlei, HU Jinyan, ZHAO Liang, XU Bingke. Impact of different surfactants on characteristics of single-phase microemulsions [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 350-356. |
[6] | Mingbao LIU, Wanzhong GUO, Wanzhong YIN. Flotation mechanism of rutile in synergistic systems composed by sodium oleate and hydroxylamine-type reagents [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3362-3370. |
[7] | Bin HUANG, Wei ZHANG, Jie WANG, Cheng FU. Effect of oil displacement agent on oil droplet stability in alkali/surfactant/polymer flooding oily wastewater [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1053-1061. |
[8] | Yankai LI, Kai WANG, Guangsheng LUO. Advances in liquid-liquid micro-dispersion and its applications in standard particle preparation [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 30-44. |
[9] | YAN Lei, DING Wei. Preparation and properties of alkyl aryl sulfonate with different mean molecular weight and its distribution [J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 193-198. |
[10] | CHEN Chen, WANG Wei, MENG Zhijun, YANG Chao, ZHENG Weichao, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Preparation of water-in-oil nano-emulsions using interfacial-reaction-induced droplet-division [J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4628-4634. |
[11] | YE Xuemin, DAI Yuqing, LI Chunxi. Review on the effect of electric field on interfacial tension and dynamics of liquid droplets [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2647-2655. |
[12] | HU Xin, SONG Binglei, CUI Zhenggang, PEI Xiaomei, JIANG Jianzhong. Synthesis and properties of didodecylpolyoxyethylene ether methyl carboxyl betaine [J]. Chemical Industry and Engineering Progree, 2015, 34(09): 3428-3434. |
[13] | FENG Rusen, PU Di, ZHOU Yang, CHEN Junhua, KOU Jiang, JIANG Xue, GUO Yongjun. Effect of compositions of the mixed alkanolamide on oil/water dynamic interfacial tensions [J]. Chemical Industry and Engineering Progree, 2015, 34(08): 2955-2960. |
[14] | CHEN Fu, PANG Min, WU Keying, YANG Mei. Synthesis of C10—C14 alkyl polyglycoside and their application as emulsifiers [J]. Chemical Industry and Engineering Progree, 2015, 34(07): 1998-2002. |
[15] | ZHANG Huijuan1,WANG Henan1,ZHANG Lühong1,HAO Li1,2,JIANG Bin1,2. Study on intensification of low interfacial tension system in reciprocating plate extraction column [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2861-2867. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |