Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 219-225.DOI: 10.16085/j.issn.1000-6613.2021-0772
• Materials science and technology • Previous Articles Next Articles
HUANG Kainan(), JI Xuezhi, WANG Fei, GAO Chengyun, LU Jingqiong()
Received:
2021-04-13
Revised:
2021-04-22
Online:
2021-11-12
Published:
2021-11-12
Contact:
LU Jingqiong
通讯作者:
卢静琼
作者简介:
黄凯楠(1994—),男,硕士研究生,研究方向为超滤膜分离。E-mail:基金资助:
CLC Number:
HUANG Kainan, JI Xuezhi, WANG Fei, GAO Chengyun, LU Jingqiong. Overview of ultrafiltration membrane technology[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 219-225.
黄凯楠, 吉学智, 王飞, 高成云, 卢静琼. 超滤膜技术概述[J]. 化工进展, 2021, 40(S2): 219-225.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0772
类别 | 举例 | 特点 |
---|---|---|
纤维素酯类 | 三乙酸纤维素(CTA)、二乙酸纤维素(CA)、混合纤维素(CA-CN)等 | 纤维素类膜在自然界种比较丰富,易亲水,易成孔,材料来源广泛、稳定,成本较低 |
聚砜类 | 聚砜(PSF)、聚醚砜(PES)、磺化聚砜(SPS)等 | 膜易成型,机械强度高,热稳定性和化学稳定性等综合性能好 |
聚烯烃类 | 聚丙烯(PP)和聚丙烯腈(PAN)等 | 膜化学性能、机械性能较好 |
氟材料 | 聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)等 | 拥有极优良的机械强度,而且耐高温、耐腐蚀性能优异,多用于强酸、强碱和众多有机溶剂,因此价格比较昂贵 |
类别 | 举例 | 特点 |
---|---|---|
纤维素酯类 | 三乙酸纤维素(CTA)、二乙酸纤维素(CA)、混合纤维素(CA-CN)等 | 纤维素类膜在自然界种比较丰富,易亲水,易成孔,材料来源广泛、稳定,成本较低 |
聚砜类 | 聚砜(PSF)、聚醚砜(PES)、磺化聚砜(SPS)等 | 膜易成型,机械强度高,热稳定性和化学稳定性等综合性能好 |
聚烯烃类 | 聚丙烯(PP)和聚丙烯腈(PAN)等 | 膜化学性能、机械性能较好 |
氟材料 | 聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)等 | 拥有极优良的机械强度,而且耐高温、耐腐蚀性能优异,多用于强酸、强碱和众多有机溶剂,因此价格比较昂贵 |
1 | 廖婵娟. 纳米无机掺杂改性聚偏氟乙烯超滤膜的制备及其性能研究[D]. 武汉: 武汉大学, 2011. |
LIAO C J. A study on preparation and characterization of inorganic materials/poly(vinylidene fluoride) composite ultrafiltration membranes[D]. Wuhan: Wuhan University, 2011. | |
2 | 宋宏臣. 改性超滤膜去除水中天然有机物的研究[D]. 上海: 上海交通大学, 2012. |
SONG H C. Removal of natural organic matter in water with modified ultrafiltration membrane[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
3 | 赵国发. 改性PVDF超滤膜的制备与表征及成膜机理研究[D]. 大庆: 东北石油大学, 2012. |
ZHAO G F. Study on preparation and formation mechanism of the modified PVDF ultrafiltration membranes[D]. Daqing: Northeast Petroleum University, 2012. | |
4 | 马小乐. 超滤膜表面亲水改性及其抗污染性能研究[D]. 天津: 天津大学, 2007. |
MA X L. Study on hydrophilic modification and antifouling property of ultrafiltration membrane surfaces[D]. Tianjin: Tianjin University, 2007. | |
5 | 杨泞珲. 饮用水处理的膜分离技术及工程实践[D]. 武汉: 武汉工程大学, 2015. |
YANG N H. Membrane separation technology and engineering practice for drinking water treatment[D]. Wuhan: Wuhan Institute of Technology, 2015. | |
6 | 巨姗姗. 超滤膜发展现状概述及国内外工程应用分析[J]. 净水技术, 2015, 34(4): 1-5. |
JU S S. Development situation and engineering application of ultrafiltration membrane at home and abroad[J]. Water Purification Technology, 2015, 34(4): 1-5. | |
7 | 王淑瑶, 卢瑞, 刘耀文. 超滤膜常用制备方法及研究进展[J]. 化工新型材料, 2018, 46(10): 235-238, 246. |
WANG S Y, LU R, LIU Y W. Research progress on preparation method of ultrafiltration membrane[J]. New Chemical Materials, 2018, 46(10): 235-238, 246. | |
8 | 张正华. 溶液相转化法制备PSF超滤膜过程中的结构控制及其性能研究[D].杭州: 浙江大学, 2011. |
ZHANG Z H. Study on structure control and performance of PSF ultrafiltration membrane preparated by solution phase inversion[D]. Hangzhou: Zhejiang University, 2011. | |
9 | 杨波. 相转化聚丙烯腈超滤膜结构和性能研究[D]. 宁波: 宁波大学, 2019. |
YANG B. Study on morphology and performance of polyacrylonitrile ultrafiltration membranes prepared by phase inversion[D]. Ningbo: Ningbo University, 2019. | |
10 | 郭玉阳. HPAN超滤膜制备及性能研究[D]. 长春: 长春工业大学, 2020. |
GUO Y Y. Study on preparation and performance of HPAN ultrafiltration membrane[D]. Changchun: Changchun University of Technology, 2020. | |
11 | 陈佳丹. 超滤膜的制备及其在菜籽油脱胶中的应用[D]. 武汉: 武汉工业学院, 2012. |
CHEN J D. Preparation of ultrafiltration membranes and application on oil degumming[D]. Wuhan: Wuhan Polytechnic University, 2012. | |
12 | 张安辉, 游海平. 超滤膜技术在水处理领域中的应用及前景[J]. 化工进展, 2009, 28(S2): 49-51. |
ZHANG A H, YOU H P. Treatment and practice of drinking water by membrane separation technology[J]. Chemical Industry and Engineering Progress, 2009, 28(S2): 49-51. | |
13 | 许浩. 低截留分子量聚醚砜超滤膜的研究[D]. 杭州: 浙江工业大学, 2019. |
XU H. Polyethersulfone ultrafiltration membrane with low molecular weight cut off[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
14 | 薛艳芳. 大豆乳清低聚糖的超滤提取及纯化研究[D]. 哈尔滨: 东北农业大学, 2014. |
XUE Y F. Ultrafiltration extraction and purification of oligosaccharides from soybean whey[D]. Harbin: Northeast Agricultural University, 2014. | |
15 | SOUZA R R D, BERGAMASCO R, COSTA S C D, et al. Recovery and purification of lactose from whey[J]. Chemical Engineering & Processing Process Intensification, 2010, 49(11): 1137-1143. |
16 | MATSUBARA Y, IWASAKI K I, NAKAJIMA M, et al. Recovery of oligosaccharides from steamed soybean waste water in tofu processing by reverse osmosis and nanofiltration membranes[J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(3): 421-428. |
17 | 姜忠义, 吴洪. 超滤膜分离技术在中药制剂生产中的应用[J]. 化学工业与工程, 2003(1): 39-44. |
JIANG Z Y, WU H. Application of ultrafiltration membrane techology in the preparation of traditional Chinese medicine[J]. Chemical Industry and Engineering, 2003(1): 39-44. | |
18 | 刘静. 基于多尺度研究方法的中药水提液膜分离传质过程及其机理[D]. 南京: 南京中医药大学, 2017. |
LIU J. Mass transfer process and mechanism of membrane separation in water extract of Chinese based on multiscale research method[D]. Nanjing: Nanjing University of Chinese Medicine, 2017. | |
19 | STEINER R. Microfiltration and ultrafiltration-principles and applications[J]. Chemie Ingenieur Technik, 1997, 69(10): 1479-1479. |
20 | LIU Y W, LI X, YANG Y L, et al. Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water[J]. Desalination, 2014, 347: 191-198. |
21 | PEIRIS R H, BUDMAN H, MORESOLI C, et al. Understanding fouling behaviour of ultrafiltration membrane processes and natural water using principal component analysis of fluorescence excitation-emission matrices[J]. Journal of Membrane Science, 2010, 357(1-2): 62-72. |
22 | 李永红. 粘土颗粒和有机物对浸没式超滤膜给水处理的膜污染特性[D]. 北京: 清华大学, 2011. |
LI Y H. Characteristics of immersed ultrafiltration membrane fouling caused by clay particle and organic matter in dringking water treatment[D]. Beijing: Tsinghua University, 2011. | |
23 | 陈栩迪. 多糖与无机颗粒物的超滤膜复合污染特性及机理解析[D]. 北京:清华大学, 2016. |
CHEN X D. Characteristics and mechanisms of combined fouling of ultrafiltration membrane by polysaccharide and inorganic particles[D]. Beijing: Tsinghua University, 2016. | |
24 | KIM H C, DEMPSEY B A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM[J]. Journal of Membrane Science, 2013, 428: 190-197. |
25 | TIAN J Y, ERNST M, CUI F, et al. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions[J]. Journal of Membrane Science, 2013, 446:1-9. |
26 | LIN C F, LIN T Y, HAO O J. Effects of humic substance characteristics on UF performance[J]. Water Research, 2000, 34(4): 1097-1106. |
27 | AMY G. Fundamental understanding of organic matter fouling of membranes[J]. Desalination, 2008, 231(1-3): 44-51. |
28 | 冯萃敏, 张欣蕊, 孙丽华, 等. 蛋白质与超滤膜界面作用能对膜污染机制的影响[J]. 工业水处理, 2016, 36(6): 33-37, 42. |
FENG C M, ZHANG X R, SUN L H, et al. Influences of interfacial action energy between protein and UF membrane on membrane fouling mechanisms[J]. Industrial Water Treatment, 2016, 36(6): 33-37, 42. | |
29 | MANSOURI J, HARRISSON S, CHEN V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities[J]. Journal of Materials Chemistry, 2010, 20(22): 4567-4586. |
30 | 易小褀. 膜法生产饮用水过程中膜生物污染研究[D]. 沈阳: 沈阳师范大学, 2012. |
YI X Q. Research on membrane biofouling during the process of drinking-water production[D]. Shenyang: Shenyang Normal University, 2012. | |
31 | TANG X, FLINT S H, BENNETT R J, et al. Biofilm growth of individual and dual strains of Klebsiella oxytoca from the dairy industry on ultrafiltration membranes[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(12): 1491. |
32 | QU F, LIANG H, TIAN J, et al. Ultrafiltration (UF) membrane fouling caused by cyanobateria: fouling effects of cells and extracellular organics matter (EOM)[J]. Desalination, 2012, 293: 30-37. |
33 | ZHAO X, MA J, WANG Z, et al. Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane[J]. Desalination, 2012, 303: 29-38. |
34 | ZHU L J, ZHU L P, JIANG J H, et al. Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive[J]. Journal of Membrane Science, 2014, 451: 157-168. |
35 | 付维贵, 李国霞, 翟高伟, 等. 凝胶微球改性PVDF超滤膜的制备及其耐油污染性能[J]. 天津工业大学学报, 2020, 39(5): 22-29. |
FU W G, LI G X, ZHAI G W, et al. Preparation of PVDF ultrafiltration membrane modified by gel microspheres and its oil fouling resistance[J]. Journal of Tiangong University, 2020, 39(5): 22-29. | |
36 | 李燕芬, 刘元法, 郭静, 等. 聚丙烯腈超滤膜的亲水改性及抗污染性能[J]. 大连工业大学学报, 2020, 39(6): 449-454. |
LI Y F, LIU Y F, GUO J, et al. Antifouling properties of PAN ultrafiltration membrane after hydrophilic modification[J]. Journal of Dalian Polytechnic University, 2020, 39(6): 449-454. | |
37 | 李明, 方旭东, 曾小平, 等. 聚砜超滤膜的亲水改性及其性能研究[J]. 武汉工程大学学报, 2020, 42(6): 642-646. |
LI M, FANG X D, CENG X P, et al. Hydrophilic modification and performances of polysulfone ultrafiltration membrane[J]. Journal of Wuhan Institute of Technology, 2020, 42(6): 642-646. | |
38 | 胡峰, 陈锋涛, 俞三传. PVDF膜表面两性离子化改性及其性能[J]. 浙江理工大学学报(自然科学版), 2020, 43(6): 774-780. |
HU F, CHEN F T, YU S C. Surface zwitterionic modification and performance analysis of PVDF membrane[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2020, 43(6): 774-780. | |
39 | CHOU W L, YU D G, YANG M C. The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment[J]. Polymers for Advanced Technologies, 2005, 16(8): 600-607. |
40 | 芦文慧, 黄肖容. 抗菌性聚砜超滤膜的制备与表征[J]. 中国新技术新产品, 2018(9): 1-5. |
LU W H, HUANG X R. Preparation and characterization of antibacterial polysulfone ultrafiltration membrane[J]. New Technology & New Products of China, 2018(9): 1-5. | |
41 | 罗鑫, 叶淑红, 刘元法, 等. PAN基抗菌超滤膜的制备及性能表征[J]. 大连工业大学学报, 2019, 38(2): 127-131. |
LUO X, YE S H, LIU Y F, et al. Preparation and properties of antibacterial PAN ultrafiltration membranes[J]. Journal of Dalian Polytechnic University, 2019, 38(2): 127-131. | |
42 | 赵军强, 杨景, 赵义平, 等. 表面接枝聚季铵盐型抗菌超滤膜的制备及表征[J]. 天津工业大学学报, 2020, 39(4): 8-14. |
ZHAO J Q, YANG J, ZHAO Y P, et al. Preparation and characterization of surface grafted polyquaternary ammonium salt antibacterial ultrafiltration membrane[J]. Journal of Tiangong University, 2020, 39(4): 8-14. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[7] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[8] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[9] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[10] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[11] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[12] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[13] | LU Shijian, LIU Miaomiao, YANG Fei, ZHANG Junjie, CHEN Siming, LIU Ling, KANG Guojun, LI Qingfang. Gas-liquid two-phase flow and mass transfer characteristics in an improved CO2 wet-wall column [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3457-3467. |
[14] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[15] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |