Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4986-4997.DOI: 10.16085/j.issn.1000-6613.2021-0952
Previous Articles Next Articles
ZHAO Chenzi1(), YUAN Hong2, LU Yang1, ZHANG Qiang1()
Received:
2021-05-06
Revised:
2021-07-09
Online:
2021-09-13
Published:
2021-09-05
Contact:
ZHANG Qiang
通讯作者:
张强
作者简介:
赵辰孜(1994—),女,博士,研究方向为固态锂电池。E-mail:基金资助:
CLC Number:
ZHAO Chenzi, YUAN Hong, LU Yang, ZHANG Qiang. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997.
赵辰孜, 袁洪, 卢洋, 张强. 固态金属锂负极界面研究进展[J]. 化工进展, 2021, 40(9): 4986-4997.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0952
25 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 1-16. |
26 | ZHU G L, ZHAO C Z, YUAN H, et al. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2020, 31: 267-273. |
27 | 赵辰孜. 基于固态电解质层的金属锂负极表面离子分布调控[D]. 北京: 清华大学, 2020. |
ZHAO C Z. Regulating ion distribution in solid-state electrolytes for lithium metal anodes [D].Beijing: Tsinghua University, 2020. | |
28 | DOUX J M, NGUYEN H, TAN D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. |
29 | HOU L P, YUAN H, ZHAO C Z, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. |
30 | YUE J P, YAN M, YIN Y X, et al. Progress of the interface design in all-solid-state Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707533. |
31 | LEPLEY N D, HOLZWARTH N A W, DU Y A. Structures, Li+mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles[J]. Physical Review B, 2013, 88(10): 104103. |
32 | LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. |
33 | PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035. |
34 | WANG H, HOOD Z D, XIA Y N, et al. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries[J]. Journal of Materials Chemistry A, 2016, 4(21): 8091-8096. |
35 | HOOD Z D, WANG H, PANDIAN A S, et al. Fabrication of sub-micrometer-thick solid electrolyte membranes of β-Li3PS4via tiled assembly of nanoscale, plate-like building blocks[J]. Advanced Energy Materials, 2018, 8(21): 1800014. |
36 | ZHOU L D, PARK K H, SUN X Q, et al. Solvent-engineered design of argyrodite Li6PS5X (X=Cl, Br, I) solid electrolytes with high ionic conductivity[J]. ACS Energy Letters, 2019, 4(1): 265-270. |
37 | SAHU G, LIN Z, LI J C, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy Environ. Sci., 2014, 7(3): 1053-1058. |
1 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
2 | LIANG Y R, XIAO Y, YAN C, et al. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes[J]. Journal of Energy Chemistry, 2020, 48: 203-207. |
3 | LI W, XU H, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. |
4 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
5 | KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. |
6 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. |
7 | HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8(1): 1-7. |
8 | WEBER D A, SENYSHYN A, WELDERT K S, et al. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12[J]. Chemistry of Materials, 2016, 28(16): 5905-5915. |
9 | KWON O, HIRAYAMA M, SUZUKI K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2-δS12[J]. Journal of Materials Chemistry A, 2015, 3(1): 438-446. |
10 | IWASAKI R, HORI S, KANNO R, et al. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12[J]. Chemistry of Materials, 2019, 31(10): 3694-3699. |
11 | NITZAN A, RATNER M A. Conduction in polymers: dynamic disorder transport[J]. The Journal of Physical Chemistry, 1994, 98(7): 1765-1775. |
12 | TERAN A A, TANG M H, MULLIN S A, et al. Effect of molecular weight on conductivity of polymer electrolytes[J]. Solid State Ionics, 2011, 203(1): 18-21. |
13 | DAWSON J A, CANEPA P, FAMPRIKIS T, et al. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(1): 362-368. |
14 | BRUCE P G, WEST A R. The A-C conductivity of polycrystalline LISICON, Li2+2xZn1-xGeO4, and a model for intergranular constriction resistances[J]. Journal of the Electrochemical Society, 1983, 130(3): 662-669. |
15 | MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781. |
16 | YU S, SIEGEL D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2017, 29(22): 9639-9647. |
17 | KOTOBUKI M, KANAMURA K, SATO Y, et al. Electrochemical properties of Li7La3Zr2O12 solid electrolyte prepared in argon atmosphere[J]. Journal of Power Sources, 2012, 199: 346-349. |
18 | CHEN C C, FU L J, MAIER J. Synergistic, ultrafast mass storage and removal in artificial mixed conductors[J]. Nature, 2016, 536(7615): 159-164. |
19 | CHEN C C, MAIER J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes[J]. Nature Energy, 2018, 3(2): 102-108. |
20 | SWIFT M W, QI Y. First-principles prediction of potentials and space-charge layers in all-solid-state batteries[J]. Physical Review Letters, 2019, 122(16): 167701. |
21 | NOMURA Y, YAMAMOTO K, HIRAYAMA T, et al. Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface[J]. Angewandte Chemie International Edition, 2019, 58(16): 5292-5296. |
22 | THOKCHOM J S, KUMAR B. The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass-ceramic[J]. Journal of Power Sources, 2010, 195(9): 2870-2876. |
23 | HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255. |
24 | HU J L, YAO Z G, CHEN K Y, et al. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries[J]. Energy Storage Materials, 2020, 28: 37-46. |
38 | BROEK J VAN DEN, AFYON S, RUPP J L M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Advanced Energy Materials, 2016, 6(19): 1600736. |
39 | JIANG P, SHI Y, LI K, et al. Recent progress on the Li7La3Zr2O12(LLZO) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
40 | CUSSEN E J. Structure and ionic conductivity in lithium garnets[J]. Journal of Materials Chemistry, 2010, 20(25): 5167. |
41 | CUSSEN E J, YIP T W S, O’NEILL G, et al. A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12[J]. Journal of Solid State Chemistry, 2011, 184(2): 470-475. |
42 | CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3(6): 487-516. |
43 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
44 | GAO L, LI J X, JU J G, et al. High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery[J]. Journal of Energy Chemistry, 2021, 54: 644-654. |
45 | ZHANG B H, LIU Y L, LIU J, et al. “Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries[J]. Journal of Energy Chemistry, 2021, 52: 318-325. |
46 | YAN Y Y, JU J W, YU M Y, et al. In-situ polymerization integrating 3D ceramic framework in all solid-state lithium battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1357. |
47 | TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: 16114. |
48 | MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396. |
49 | ZHOU W D, WANG S F, LI Y T, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
50 | LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2: 17035. |
51 | HALLINAN D T, MULLIN S A, STONE G M, et al. Lithium metal stability in batteries with block copolymer electrolytes[J]. Journal of the Electrochemical Society, 2013, 160(3): A464-A470. |
52 | CAPUANO F, CROCE F, SCROSATI B. Composite polymer electrolytes[J]. Journal of the Electrochemical Society, 1991, 138(7): 1918-1922. |
53 | HARRY K J, LIAO X X, PARKINSON D Y, et al. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane[J]. Journal of the Electrochemical Society, 2015, 162(14): A2699-A2706. |
54 | HARRY K J, HIGA K, SRINIVASAN V, et al. Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode[J]. Journal of the Electrochemical Society, 2016, 163(10): A2216-A2224. |
55 | YOUNG R J, LOVELL P A. Introduction to polymers[M]. 3rd ed. England: CRC Press, 2011. |
56 | KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. |
57 | ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49): 15825-15828. |
58 | CHAI J C, LIU Z H, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): 1600377. |
59 | LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
60 | YUAN H, NAN H X, ZHAO C Z, et al. Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells[J]. Batteries & Supercaps, 2020, 3(7): 596-603. |
61 | LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925. |
62 | HOU Z, ZHANG J L, WANG W H, et al. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases[J]. Journal of Energy Chemistry, 2020, 45: 7-17. |
63 | CHEN L, QIU X M, BAI Z M, et al. Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework[J]. Journal of Energy Chemistry, 2021, 52: 210-217. |
64 | SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
65 | HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
66 | XU C, AHMAD Z, ARYANFAR A, et al. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes[J]. PNAS, 2017, 114(1): 57-61. |
67 | SWAMY T, PARK R, SHELDON B W, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet[J]. Journal of the Electrochemical Society, 2018, 165(16): A3648-A3655. |
68 | PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003. |
69 | AGUESSE F, MANALASTAS W, BUANNIC L, et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3808-3816. |
70 | SONG Y L, YANG L Y, ZHAO W G, et al. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte[J]. Advanced Energy Materials, 2019, 9(21): 1900671. |
71 | WU B B, WANG S Y, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries[J]. Energy & Environmental Science, 2018, 11(7): 1803-1810. |
72 | SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139. |
73 | RAJ R, WOLFENSTINE J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126. |
74 | HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590. |
75 | WENZEL S, LEICHTWEISS T, KRÜGER D, et al. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
76 | WENZEL S, RANDAU S, LEICHTWEIß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407. |
77 | LEWIS J A, CORTES F J Q, BOEBINGER M G, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure[J]. ACS Energy Letters, 2019, 4(2): 591-599. |
78 | LEUNG K, PEARSE A J, TALIN A A, et al. Kinetics-controlled degradation reactions at crystalline LiPON/LixCoO2 and crystalline LiPON/Li-metal interfaces[J]. ChemSusChem, 2018, 11(12): 1956-1969. |
79 | ZHANG W B, LEICHTWEIß T, CULVER S P, et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35888-35896. |
80 | HAN F D, GAO T, ZHU Y J, et al. A battery made from a single material[J]. Advanced Materials, 2015, 27(23): 3473-3483. |
81 | ZHAO C Z. Regulating ion distribution in solid-state electrolytes for lithium metal anodes [D]. Beijng: Tsinghua University, 2020. |
82 | ZHAO C Z, ZHAO B C, YAN C, et al. Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review[J]. Energy Storage Materials, 2020, 24: 75-84. |
83 | XU B Y, DUAN H N, LIU H Z, et al. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21077-21082. |
84 | WANG C H, SUN Q, LIU Y L, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes[J]. Nano Energy, 2018, 48: 35-43. |
85 | SHIN J H, HENDERSON W A, APPETECCHI G B, et al. Recent developments in the ENEA lithium metal battery project[J]. Electrochimica Acta, 2005, 50(19): 3859-3865. |
86 | HUO H Y, ZHAO N, SUN J Y, et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery[J]. Journal of Power Sources, 2017, 372: 1-7. |
87 | KIM H W, MANIKANDAN P, LIM Y J, et al. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(43): 17025-17032. |
88 | ZHANG Z Z, ZHANG Q H, SHI J N, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): 1601196. |
89 | KIM H, DING Y, KOHL P A. LiSICON - ionic liquid electrolyte for lithium ion battery[J]. Journal of Power Sources, 2012, 198: 281-286. |
90 | SUN B, LIU K, LANG J L, et al. Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature[J]. Electrochimica Acta, 2018, 284: 662-668. |
91 | LUO W, GONG Y H, ZHU Y Z, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. |
92 | HAN X G, GONG Y H, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
93 | WANG C W, GONG Y H, LIU B Y, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571. |
94 | LUO W, GONG Y H, ZHU Y Z, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): 1606042. |
95 | LIU B Y, GONG Y H, FU K, et al. Garnet solid electrolyte protected Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18809-18815. |
96 | CHINNAM P R, WUNDER S L. Engineered interfaces in hybrid ceramic-polymer electrolytes for use in all-solid-state Li batteries[J]. ACS Energy Letters, 2017, 2(1): 134-138. |
97 | WANG Q S, WEN Z Y, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. Chemical Communications, 2016, 52(8): 1637-1640. |
98 | CHENG Q, LI A J, LI N, et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule, 2019, 3(6): 1510-1522. |
99 | JIN Y, LIU K, LANG J L, et al. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage[J]. Nature Energy, 2018, 3(9): 732-738. |
100 | FU Z H, CHEN X, ZHAO C Z, et al. Stress regulation on atomic bonding and ionic diffusivity: mechanochemical effects in sulfide solid electrolytes[J]. Energy & Fuels, 2021, DOI: 10.1021/acs.energyfuels.1c00488. |
101 | SHI P, ZHANG X Q, SHEN X, et al. A review of composite lithium metal anode for practical applications[J]. Advanced Materials Technologies, 2020, 5(1): 1900806. |
102 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
103 | FU K K, GONG Y H, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575. |
104 | RANDAU S, WEBER D A, KÖTZ O, et al. Benchmarking the performance of all-solid-state lithium batteries[J]. Nature Energy, 2020, 5(3): 259-270. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[3] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[4] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
[5] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[6] | CHEN Peijia, GE Xin, LIANG Weijie, YIN Shuang, ZHANG Zhicong, LYU Jianer, LIU Weidong, CHEN Youpeng, GE Jianfang. Research progress of polymer-based thermal interface materials and thermal conductivity properties [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 269-281. |
[7] | ZHANG Zhe, LANG Yuanlu, WU Qiaoyan, CHEN Jianan, JI Hongwei, LI Xingbo, MA Yan, TAO Liouqian, QIAO Chunyan, WANG Jinyue. Analysis of surface and interface evolution characteristics of freezing droplet during melting [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 1-14. |
[8] | ZHANG Meng, LI Shuqian, ZHANG Dong, MA Kunru. Motion characteristics for vapor-liquid interfaces of direct contact condensation in a microchannel [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4644-4652. |
[9] | CAI Chuyue, FANG Xiaoming, LING Ziye, ZHANG Zhengguo. Research progress on thermal conductivity enhancement and form stability improvement of phase change thermal interface materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4907-4917. |
[10] | WANG Qiaoyi, LU Shaofeng, SHI Wenzhao, HONG Xun, YAO Dongxia, ZHANG Ling. Preparation and properties of polyurea/polyurethane shell microencapsulated essence by interfacial polymerization [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4432-4440. |
[11] | ZHANG Xueying, MA Jun, HE Lin, SUI Hong, LI Xingang. Molecular structure of interfacially active asphaltene in asphalt rock and its adsorption characteristics on mineral surface [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 628-636. |
[12] | ZHAO Guoke, PAN Guoyuan, ZHANG Yang, YU Hao, ZHAO Muhua, TANG Gongqing, LIU Yiqun. Recent advances in graphene-based membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5896-5911. |
[13] | DONG Huanhuan, LI Hong, JIAO Yilai, LI Xingang, GAO Xin. Influence of porous foam media on gas-liquid equilibrium of binary system [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 67-74. |
[14] | ZHANG Lisheng, HUANG Shan, LIU Shicheng, ZHOU Qulan, PEI Aixia, LI Na. Numerical simulation study on anti-corrosion coating of Claus process [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 327-333. |
[15] | XING Yijing, LIU Fang, ZHANG Yalin, LI Haibin. Research progress on preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 281-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |