1 |
赵俊杰, 涂正凯. 高温车用燃料电池的发展及现状综述[J]. 化工进展, 2020, 39(5): 1722-1733.
|
|
ZHAO Junjie, TU Zhengkai. Review on the development and present situation of high temperature vehicle fuel cell[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1722-1733.
|
2 |
李振宇, 任文坡, 黄格省, 等. 我国新能源汽车产业发展现状及思考[J]. 化工进展,2017, 36(7): 2337-2343.
|
|
LI Zhenyu, REN Wenpo, HUANG Gesheng,et al. Development situation and thinking of China’s new energy vehicle industry[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2337-2343.
|
3 |
卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(5): 565-572.
|
|
LU Shanfu, XU Xin, ZHANG Jin, et al. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells[J]. Scientia Sinica (Chimica), 2017, 47(5): 565-572.
|
4 |
WANG S Y, JIANG S P. Prospects of fuel cell technologies[J]. Natl. Sci. Rev., 2017, 4(2): 163-166.
|
5 |
ZHANG J, AILI D, LU S F, et al. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J]. Research, 2020, 2020: 9089405.
|
6 |
ZHANG J, XIANG Y, LU S F, et al. High temperature polymer electrolyte membrane fuel cells for integrated fuel cell-methanol reformer power systems: a critical review[J]. Adv. Sustainable Syst., 2018, 2(8/9): 1700184.
|
7 |
CHENG Y, ZHANG J, LU S F, et al. Significantly enhanced performance of direct methanol fuel cells at elevated temperatures[J]. J. Power Sources, 2020, 450: 227620.
|
8 |
YAN W, XIANG Y, ZHANG J, et al. Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures[J]. Adv. Sustainable Syst., 2020, 4(7): 2000065.
|
9 |
CHENG Y, ZHANG J, LU S F, et al. High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200-250℃[J]. Inter. J. Hydrogen Energy, 2018, 43(49): 22487-22499.
|
10 |
ZHANG J J, BAI H J, YAN W R, et al. Enhancing cell performance and durability of high temperature polymer electrolyte membrane fuel cells by inhibiting the formation of cracks in catalyst layers[J]. J. Electrochem. Soc., 2020, 167(11): 114501.
|
11 |
李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展,2018, 37(9): 3446-3453.
|
|
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3446-3453.
|
12 |
王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第二部分:操作条件[J]. 化工进展,2021, 40(1): 118-136.
|
|
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells——Part Ⅱ: Operation conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 118-136.
|
13 |
HAN I S, LIM J, JEONG J, et al. Effect of serpentine flow-field designs on performance of PEMFC stacks for micro-CHP systems[J]. Renew. Energ., 2013, 54: 180-188.
|
14 |
曹鹏贞, 王红星, 王宇新. 质子交换膜燃料电池流道设计[J]. 电源技术, 2007, 31(4): 341-343.
|
|
CAO Pengzhen, WANG Hongxing, WANG Yuxin. Design of flow channels for proton exchange membrane fuel cells[J]. Chinese Journal of Power Sources, 2007, 31(4): 341-343.
|
15 |
熊济时, 肖金生, 潘牧. 质子交换膜燃料电池流场模拟与结构尺寸优化[J]. 武汉理工大学学报, 2009, 33(3): 534-536, 568.
|
|
XIONG Jishi, XIAO Jinsheng, PAN Mu. Modeling and optimizing of the flow field in PEM fuel cell[J]. Journal of Wuhan University of Technology, 2009, 33(3): 534-536, 568.
|
16 |
尧磊, 彭杰, 张剑波, 等. 质子交换膜燃料电池冷启动的数值模拟[J]. 化工进展, 2019, 38(9): 4029-4035.
|
|
YAO Lei, PENG Jie, ZHANG Jianbo, et al. Numerical simulation of cold start processes in proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4029-4035.
|
17 |
侯明, 吴金锋, 衣宝廉, 等. PEM燃料电池流场板[J]. 电源技术, 2001, 25(4): 294-298.
|
|
HOU Ming, WU Jinfeng, YI Baolian, et al. Flow-field plates in proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2001, 25(4): 294-298.
|
18 |
KAHRAMAN H, ORHAN M F. Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling[J]. Energy Convers. Manage., 2017, 133: 363-384.
|
19 |
VELISALA V, SRINIVASULU G N. Numerical simulation and experimental comparison of single, double and triple serpentine flow channel configuration on performance of a PEM fuel cell[J]. Arab. J. Sci. Eng., 2018, 43(3):1225-1234.
|
20 |
谭雅巍, 姜炜, 李增耀, 等. 流道结构和几何尺寸对燃料电池性能影响的实验研究[J]. 工程热物理学报, 2006, 27(6): 1026-1028.
|
|
TAN Yawei, JIANG Wei, LI Zengyao, et al. Effects of gas flow distributor structures and geometric dimensions of the polar plates on the performance of a PEM fuel cell[J]. Journal of Engineering Thermophysics, 2006, 27(6): 1026-1028.
|
21 |
GHANBARIAN A, KERMANI M J, SCHOLTA J, et al. Polymer electrolyte membrane fuel cell flow field design criteria – Application to parallel serpentine flow patterns[J]. Energy Convers. Manage., 2018, 166: 281-296.
|
22 |
陈士忠, 夏忠贤, 王艺澄, 等. 蛇形流场PEMFC性能影响因素的数值模拟[J]. 电源技术, 2017, 41(2): 230-233.
|
|
CHEN Shizhong, XIA Zhongxian, WANG Yicheng, et al. Numerical simulation of influencing factors on performance of PEMFC with serpentine flow field[J]. Chinese Journal of Power Sources, 2017, 41(2): 230-233.
|
23 |
胡桂林, 樊建人. 多通道蛇形流场PEMFC内传递现象的数值模拟[J]. 电源技术, 2009, 33(4): 245-248.
|
|
HU Guilin, FAN Jianren. Numerical simulation of transport phenomena in PEMFC with multi-channel serpentine flow fields[J]. Chinese Journal of Power Sources, 2009, 33(4): 245-248.
|
24 |
吴孟飞, 鲁聪达, 吴明格, 等. 多蛇形流道几何特征的数值研究[J]. 电池工业, 2012, 17(4): 221-226.
|
|
WU Mengfei, LU Congda, WU Mingge, et al. Numerical study on the geometrical feature of multiple serpentine flow channels[J]. Chinese Battery Industry, 2012, 17(4): 221-226.
|
25 |
WANG X D, YAN W M, DUAN Y Y, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J]. Energy Convers. Manage., 2010, 51: 959-968.
|
26 |
叶东浩, 詹志刚. PEM燃料电池双极板流场结构研究进展[J]. 电池工业, 2010, 15(6): 376-380.
|
|
YE Donghao, ZHAN Zhigang. Research progress of bipolar plate flow field structure of PEMFC[J]. Chinese Battery Industry, 2010, 15(6): 376-380.
|
27 |
HUANG C, LIN J. Optimal gas channel shape design for a serpentine PEMFC: theoretical and experimental studies[J]. J. Electrochem. Soc., 2009, 156(1): B178.
|
28 |
MANSO A P, MARZO F F, BARRANCO J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. Inter. J. Hydrogen Energy, 2012, 37(20): 15256-15287.
|
29 |
SHIMPALEE S, GREENWAY S, VAN ZEE J W. The impact of channel path length on PEMFC flow-field design[J]. J. Power Sources, 2006, 160(1): 398-406.
|
30 |
张劲, 郭志斌, 张巨佳, 等. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596.
|
|
ZHANG Jin, GUO Zhibin, ZHANG Jujia, et al. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596.
|
31 |
SINGDEO D, DEY T, GAIKWAD S, et al. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell[J]. Appl. Energy, 2017, 195: 13-22.
|
32 |
SHIMPALEE S, GREENWAY S, SPUCKLER D, et al. Predicting water and current distributions in a commercial-size PEMFC[J]. J. Power Sources, 2004, 135(1/2): 79-87.
|
33 |
肖宽, 潘牧, 詹志刚, 等. PEMFC双极板流场结构研究现状[J]. 电源技术, 2018, 42(1): 153-156.
|
|
XIAO Kuan, PAN Mu, ZHAN Zhigang, et al. Research statues of bipolar plate flow field structure of PEMFC[J]. Chinese Journal of Power Sources, 2018, 42(1): 153-156.
|
34 |
ABDUL RASHEED R K, QUAN L, ZHANG C Z, et al. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)[J]. Int. J. Hydrogen Energy, 2017, 42(5): 3142-3165.
|
35 |
CHOI K S, KIM H M, MOON S M. Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC[J]. Int. J. Hydrogen Energy, 2011, 36(2): 1613-1627.
|
36 |
卢善富, 相艳, 蒋三平. 一种燃料电池用的高温质子交换膜及制备方法: CN102376961A[P]. 2012-03-14.
|
|
LU Shanfu, XIANG Yan, JIANG Sanping. High temperature proton exchange membrane for fuel cell, and preparation method thereof: CN102376961A[P]. 2012-03-14.
|
37 |
XU X, WANG H N, LU S F, et al. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 286: 458-463.
|
38 |
BAI H J, WANG H N, ZHANG J, et al. Simultaneously enhancing ionic conduction and mechanical strength of poly(ether sulfones)-poly(vinyl pyrrolidone) membrane by introducing graphitic carbon nitride nanosheets for high temperature proton exchange membrane fuel cell application[J]. J. Membr. Sci., 2018, 558:26-33.
|
39 |
LU S F, XIU R J, XU X, et al. Polytetrafluoroethylene(PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells[J]. J. Membr. Sci., 2014, 464: 1-7.
|
40 |
ZHANG J J, ZHANG J, BAI H J, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. J. Membr. Sci., 2019, 572: 496-503.
|