Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4975-4985.DOI: 10.16085/j.issn.1000-6613.2021-0046
Previous Articles Next Articles
LUO Laiming(), CHEN Si’an, WANG Haining(), ZHANG Jin, LU Shanfu(), XIANG Yan
Received:
2021-01-11
Revised:
2021-03-22
Online:
2021-09-13
Published:
2021-09-05
Contact:
WANG Haining,LU Shanfu
罗来明(), 陈思安, 王海宁(), 张劲, 卢善富(), 相艳
通讯作者:
王海宁,卢善富
作者简介:
罗来明(1993—),男,博士研究生,研究方向为燃料电池数值模拟。E-mail:luolaiming 基金资助:
CLC Number:
LUO Laiming, CHEN Si’an, WANG Haining, ZHANG Jin, LU Shanfu, XIANG Yan. Simulation and optimization of large-scale (200cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985.
罗来明, 陈思安, 王海宁, 张劲, 卢善富, 相艳. 高温聚合物电解质膜燃料电池大尺寸(200cm2)多蛇形流场模拟与优化[J]. 化工进展, 2021, 40(9): 4975-4985.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0046
流场 | 流场长度/mm | 流场宽度/mm | 通道宽度/mm | 通道深度/mm | 脊宽度/mm | 扩散层厚度/mm |
---|---|---|---|---|---|---|
Hor-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
Ver-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
流场 | 流场长度/mm | 流场宽度/mm | 通道宽度/mm | 通道深度/mm | 脊宽度/mm | 扩散层厚度/mm |
---|---|---|---|---|---|---|
Hor-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
Ver-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
参数 | 数值 |
---|---|
出口压强/Pa | 101325 |
工作温度/℃ | 150 |
阴极参考交换电流密度/A·m-2 | 0.02 |
阴极转移系数 | 0.88381 |
开路电压/V | 1.23 |
工作电压/V | 0.6 |
氧质量分数 | 0.228 |
扩散层孔隙率 | 0.4 |
扩散层渗透率/m2 | 1×10-12 |
气体黏度/Pa·s | 2.46×10-5 |
氧气参考浓度/mol·m-3 | 40.88 |
氧气-氮气二元扩散系数/m2·s-1 | 4.1807×10-5 |
氧气-水蒸气二元扩散系数/m2·s-1 | 4.9136×10-5 |
氮气-水蒸气二元扩散系数/m2·s-1 | 4.4848×10-5 |
集总电阻/Ω·m2 | 0.15×10-5 |
参数 | 数值 |
---|---|
出口压强/Pa | 101325 |
工作温度/℃ | 150 |
阴极参考交换电流密度/A·m-2 | 0.02 |
阴极转移系数 | 0.88381 |
开路电压/V | 1.23 |
工作电压/V | 0.6 |
氧质量分数 | 0.228 |
扩散层孔隙率 | 0.4 |
扩散层渗透率/m2 | 1×10-12 |
气体黏度/Pa·s | 2.46×10-5 |
氧气参考浓度/mol·m-3 | 40.88 |
氧气-氮气二元扩散系数/m2·s-1 | 4.1807×10-5 |
氧气-水蒸气二元扩散系数/m2·s-1 | 4.9136×10-5 |
氮气-水蒸气二元扩散系数/m2·s-1 | 4.4848×10-5 |
集总电阻/Ω·m2 | 0.15×10-5 |
流场 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
Hor-S | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
Ver-S | 0.672 | 115.35 | 316.53 | 0.0015 | 23.2 |
Hor-S | 0.840 | 148.09 | 559.83 | 0.0065 | 44.2 |
Ver-S | 0.840 | 145.73 | 391.19 | 0.0063 | 43.1 |
Hor-S | 1.008 | 171.69 | 649.72 | 0.0133 | 55.3 |
Ver-S | 1.008 | 169.33 | 468.76 | 0.0137 | 55.1 |
Hor-S | 1.176 | 191.79 | 760.04 | 0.0230 | 64.1 |
Ver-S | 1.176 | 189.10 | 546.59 | 0.0232 | 63.8 |
Hor-S | 1.344 | 208.24 | 871.90 | 0.0339 | 70.3 |
Ver-S | 1.344 | 205.35 | 624.88 | 0.0339 | 69.9 |
Hor-S | 1.527 | 222.78 | 996.07 | 0.0459 | 75.3 |
Ver-S | 1.527 | 219.77 | 711.07 | 0.0456 | 74.8 |
流场 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
Hor-S | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
Ver-S | 0.672 | 115.35 | 316.53 | 0.0015 | 23.2 |
Hor-S | 0.840 | 148.09 | 559.83 | 0.0065 | 44.2 |
Ver-S | 0.840 | 145.73 | 391.19 | 0.0063 | 43.1 |
Hor-S | 1.008 | 171.69 | 649.72 | 0.0133 | 55.3 |
Ver-S | 1.008 | 169.33 | 468.76 | 0.0137 | 55.1 |
Hor-S | 1.176 | 191.79 | 760.04 | 0.0230 | 64.1 |
Ver-S | 1.176 | 189.10 | 546.59 | 0.0232 | 63.8 |
Hor-S | 1.344 | 208.24 | 871.90 | 0.0339 | 70.3 |
Ver-S | 1.344 | 205.35 | 624.88 | 0.0339 | 69.9 |
Hor-S | 1.527 | 222.78 | 996.07 | 0.0459 | 75.3 |
Ver-S | 1.527 | 219.77 | 711.07 | 0.0456 | 74.8 |
(气体通道数/流速)/m·s-1 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
6/1.867 | 0.672 | 127.16 | 2386.83 | 0.0029 | 31.6 |
7/1.600 | 0.672 | 126.05 | 1751.36 | 0.0027 | 31.0 |
9/1.244 | 0.672 | 122.66 | 1116.0 | 0.0020 | 28.3 |
11/1.018 | 0.672 | 121.50 | 733.65 | 0.0019 | 27.7 |
14/0.800 | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
(气体通道数/流速)/m·s-1 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
6/1.867 | 0.672 | 127.16 | 2386.83 | 0.0029 | 31.6 |
7/1.600 | 0.672 | 126.05 | 1751.36 | 0.0027 | 31.0 |
9/1.244 | 0.672 | 122.66 | 1116.0 | 0.0020 | 28.3 |
11/1.018 | 0.672 | 121.50 | 733.65 | 0.0019 | 27.7 |
14/0.800 | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
1 | 赵俊杰, 涂正凯. 高温车用燃料电池的发展及现状综述[J]. 化工进展, 2020, 39(5): 1722-1733. |
ZHAO Junjie, TU Zhengkai. Review on the development and present situation of high temperature vehicle fuel cell[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1722-1733. | |
2 | 李振宇, 任文坡, 黄格省, 等. 我国新能源汽车产业发展现状及思考[J]. 化工进展,2017, 36(7): 2337-2343. |
LI Zhenyu, REN Wenpo, HUANG Gesheng,et al. Development situation and thinking of China’s new energy vehicle industry[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2337-2343. | |
3 | 卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(5): 565-572. |
LU Shanfu, XU Xin, ZHANG Jin, et al. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells[J]. Scientia Sinica (Chimica), 2017, 47(5): 565-572. | |
4 | WANG S Y, JIANG S P. Prospects of fuel cell technologies[J]. Natl. Sci. Rev., 2017, 4(2): 163-166. |
5 | ZHANG J, AILI D, LU S F, et al. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J]. Research, 2020, 2020: 9089405. |
6 | ZHANG J, XIANG Y, LU S F, et al. High temperature polymer electrolyte membrane fuel cells for integrated fuel cell-methanol reformer power systems: a critical review[J]. Adv. Sustainable Syst., 2018, 2(8/9): 1700184. |
7 | CHENG Y, ZHANG J, LU S F, et al. Significantly enhanced performance of direct methanol fuel cells at elevated temperatures[J]. J. Power Sources, 2020, 450: 227620. |
8 | YAN W, XIANG Y, ZHANG J, et al. Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures[J]. Adv. Sustainable Syst., 2020, 4(7): 2000065. |
9 | CHENG Y, ZHANG J, LU S F, et al. High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200-250℃[J]. Inter. J. Hydrogen Energy, 2018, 43(49): 22487-22499. |
10 | ZHANG J J, BAI H J, YAN W R, et al. Enhancing cell performance and durability of high temperature polymer electrolyte membrane fuel cells by inhibiting the formation of cracks in catalyst layers[J]. J. Electrochem. Soc., 2020, 167(11): 114501. |
11 | 李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展,2018, 37(9): 3446-3453. |
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3446-3453. | |
12 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第二部分:操作条件[J]. 化工进展,2021, 40(1): 118-136. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells——Part Ⅱ: Operation conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 118-136. | |
13 | HAN I S, LIM J, JEONG J, et al. Effect of serpentine flow-field designs on performance of PEMFC stacks for micro-CHP systems[J]. Renew. Energ., 2013, 54: 180-188. |
14 | 曹鹏贞, 王红星, 王宇新. 质子交换膜燃料电池流道设计[J]. 电源技术, 2007, 31(4): 341-343. |
CAO Pengzhen, WANG Hongxing, WANG Yuxin. Design of flow channels for proton exchange membrane fuel cells[J]. Chinese Journal of Power Sources, 2007, 31(4): 341-343. | |
15 | 熊济时, 肖金生, 潘牧. 质子交换膜燃料电池流场模拟与结构尺寸优化[J]. 武汉理工大学学报, 2009, 33(3): 534-536, 568. |
XIONG Jishi, XIAO Jinsheng, PAN Mu. Modeling and optimizing of the flow field in PEM fuel cell[J]. Journal of Wuhan University of Technology, 2009, 33(3): 534-536, 568. | |
16 | 尧磊, 彭杰, 张剑波, 等. 质子交换膜燃料电池冷启动的数值模拟[J]. 化工进展, 2019, 38(9): 4029-4035. |
YAO Lei, PENG Jie, ZHANG Jianbo, et al. Numerical simulation of cold start processes in proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4029-4035. | |
17 | 侯明, 吴金锋, 衣宝廉, 等. PEM燃料电池流场板[J]. 电源技术, 2001, 25(4): 294-298. |
HOU Ming, WU Jinfeng, YI Baolian, et al. Flow-field plates in proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2001, 25(4): 294-298. | |
18 | KAHRAMAN H, ORHAN M F. Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling[J]. Energy Convers. Manage., 2017, 133: 363-384. |
19 | VELISALA V, SRINIVASULU G N. Numerical simulation and experimental comparison of single, double and triple serpentine flow channel configuration on performance of a PEM fuel cell[J]. Arab. J. Sci. Eng., 2018, 43(3):1225-1234. |
20 | 谭雅巍, 姜炜, 李增耀, 等. 流道结构和几何尺寸对燃料电池性能影响的实验研究[J]. 工程热物理学报, 2006, 27(6): 1026-1028. |
TAN Yawei, JIANG Wei, LI Zengyao, et al. Effects of gas flow distributor structures and geometric dimensions of the polar plates on the performance of a PEM fuel cell[J]. Journal of Engineering Thermophysics, 2006, 27(6): 1026-1028. | |
21 | GHANBARIAN A, KERMANI M J, SCHOLTA J, et al. Polymer electrolyte membrane fuel cell flow field design criteria – Application to parallel serpentine flow patterns[J]. Energy Convers. Manage., 2018, 166: 281-296. |
22 | 陈士忠, 夏忠贤, 王艺澄, 等. 蛇形流场PEMFC性能影响因素的数值模拟[J]. 电源技术, 2017, 41(2): 230-233. |
CHEN Shizhong, XIA Zhongxian, WANG Yicheng, et al. Numerical simulation of influencing factors on performance of PEMFC with serpentine flow field[J]. Chinese Journal of Power Sources, 2017, 41(2): 230-233. | |
23 | 胡桂林, 樊建人. 多通道蛇形流场PEMFC内传递现象的数值模拟[J]. 电源技术, 2009, 33(4): 245-248. |
HU Guilin, FAN Jianren. Numerical simulation of transport phenomena in PEMFC with multi-channel serpentine flow fields[J]. Chinese Journal of Power Sources, 2009, 33(4): 245-248. | |
24 | 吴孟飞, 鲁聪达, 吴明格, 等. 多蛇形流道几何特征的数值研究[J]. 电池工业, 2012, 17(4): 221-226. |
WU Mengfei, LU Congda, WU Mingge, et al. Numerical study on the geometrical feature of multiple serpentine flow channels[J]. Chinese Battery Industry, 2012, 17(4): 221-226. | |
25 | WANG X D, YAN W M, DUAN Y Y, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J]. Energy Convers. Manage., 2010, 51: 959-968. |
26 | 叶东浩, 詹志刚. PEM燃料电池双极板流场结构研究进展[J]. 电池工业, 2010, 15(6): 376-380. |
YE Donghao, ZHAN Zhigang. Research progress of bipolar plate flow field structure of PEMFC[J]. Chinese Battery Industry, 2010, 15(6): 376-380. | |
27 | HUANG C, LIN J. Optimal gas channel shape design for a serpentine PEMFC: theoretical and experimental studies[J]. J. Electrochem. Soc., 2009, 156(1): B178. |
28 | MANSO A P, MARZO F F, BARRANCO J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. Inter. J. Hydrogen Energy, 2012, 37(20): 15256-15287. |
29 | SHIMPALEE S, GREENWAY S, VAN ZEE J W. The impact of channel path length on PEMFC flow-field design[J]. J. Power Sources, 2006, 160(1): 398-406. |
30 | 张劲, 郭志斌, 张巨佳, 等. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596. |
ZHANG Jin, GUO Zhibin, ZHANG Jujia, et al. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596. | |
31 | SINGDEO D, DEY T, GAIKWAD S, et al. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell[J]. Appl. Energy, 2017, 195: 13-22. |
32 | SHIMPALEE S, GREENWAY S, SPUCKLER D, et al. Predicting water and current distributions in a commercial-size PEMFC[J]. J. Power Sources, 2004, 135(1/2): 79-87. |
33 | 肖宽, 潘牧, 詹志刚, 等. PEMFC双极板流场结构研究现状[J]. 电源技术, 2018, 42(1): 153-156. |
XIAO Kuan, PAN Mu, ZHAN Zhigang, et al. Research statues of bipolar plate flow field structure of PEMFC[J]. Chinese Journal of Power Sources, 2018, 42(1): 153-156. | |
34 | ABDUL RASHEED R K, QUAN L, ZHANG C Z, et al. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)[J]. Int. J. Hydrogen Energy, 2017, 42(5): 3142-3165. |
35 | CHOI K S, KIM H M, MOON S M. Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC[J]. Int. J. Hydrogen Energy, 2011, 36(2): 1613-1627. |
36 | 卢善富, 相艳, 蒋三平. 一种燃料电池用的高温质子交换膜及制备方法: CN102376961A[P]. 2012-03-14. |
LU Shanfu, XIANG Yan, JIANG Sanping. High temperature proton exchange membrane for fuel cell, and preparation method thereof: CN102376961A[P]. 2012-03-14. | |
37 | XU X, WANG H N, LU S F, et al. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 286: 458-463. |
38 | BAI H J, WANG H N, ZHANG J, et al. Simultaneously enhancing ionic conduction and mechanical strength of poly(ether sulfones)-poly(vinyl pyrrolidone) membrane by introducing graphitic carbon nitride nanosheets for high temperature proton exchange membrane fuel cell application[J]. J. Membr. Sci., 2018, 558:26-33. |
39 | LU S F, XIU R J, XU X, et al. Polytetrafluoroethylene(PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells[J]. J. Membr. Sci., 2014, 464: 1-7. |
40 | ZHANG J J, ZHANG J, BAI H J, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. J. Membr. Sci., 2019, 572: 496-503. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[3] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[7] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[8] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[9] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[10] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[11] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[12] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[13] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[14] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[15] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |