Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3411-3420.DOI: 10.16085/j.issn.1000-6613.2020-1423
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
YI Conghua(), XU Qinghe, WANG Miao, YANG Dongjie
Received:
2020-07-23
Revised:
2020-09-20
Online:
2021-06-22
Published:
2021-06-06
Contact:
YI Conghua
通讯作者:
易聪华
作者简介:
易聪华(1979—),女,博士,副教授,研究方向为生物质资源的高值化利用。E-mail:CLC Number:
YI Conghua, XU Qinghe, WANG Miao, YANG Dongjie. Research progress of pH-sensitive biopolymer nanocarriers[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3411-3420.
易聪华, 徐青荷, 王淼, 杨东杰. pH敏感性生物基纳米载药粒子的研究进展[J]. 化工进展, 2021, 40(6): 3411-3420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1423
类型 | pH敏感范围 | 化学结构 | 降解产物 |
---|---|---|---|
腙键(hydrazone) | 5.0 | ||
β-羧基酰胺键(amide) | 4.5~6.0 | ||
亚胺键(imine) | 6.8 |
类型 | pH敏感范围 | 化学结构 | 降解产物 |
---|---|---|---|
腙键(hydrazone) | 5.0 | ||
β-羧基酰胺键(amide) | 4.5~6.0 | ||
亚胺键(imine) | 6.8 |
类型 | pH敏感值 | 化学结构 | 质子化/ 离子化作用 |
---|---|---|---|
咪唑基(imidazole) | 6.5 | ||
氨基(amino) | 约6.5 | ||
叔氨基(tertiary amino) | 约6.5 | ||
羧基(carboxyl) | 约7.4 |
类型 | pH敏感值 | 化学结构 | 质子化/ 离子化作用 |
---|---|---|---|
咪唑基(imidazole) | 6.5 | ||
氨基(amino) | 约6.5 | ||
叔氨基(tertiary amino) | 约6.5 | ||
羧基(carboxyl) | 约7.4 |
聚合物骨架 | 药物 | pH敏感化学键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
光交联壳聚糖-香豆素 | 槲皮素 | 亚胺键 | 10.2 | 78.4 | 肿瘤化疗 | [ |
壳聚糖/硫酸葡聚糖/壳聚糖 | 紫杉醇和5-氟尿嘧啶 | 氨基 | — | 66.3、75.2 | 肿瘤化疗 | [ |
羧甲基壳聚糖 | 阿霉素 | 氨基和羧基 | 53.02 | 16.77 | 肿瘤化疗 | [ |
聚乙二醇化羧甲基壳聚糖 | 阿霉素 | 叔氨基、氨基和羧基 | >36 | — | 肿瘤化疗 | [ |
海藻酸-精氨酸-壳聚糖 | 吡喹酮或伊维菌素 | 氨基和羧基 | — | — | 口服给药 | [ |
海藻酸-壳聚糖 | 甲苯达唑或伊维菌素 | 氨基和羧基 | — | — | 口服抗寄生虫给药 | [ |
聚合物骨架 | 药物 | pH敏感化学键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
光交联壳聚糖-香豆素 | 槲皮素 | 亚胺键 | 10.2 | 78.4 | 肿瘤化疗 | [ |
壳聚糖/硫酸葡聚糖/壳聚糖 | 紫杉醇和5-氟尿嘧啶 | 氨基 | — | 66.3、75.2 | 肿瘤化疗 | [ |
羧甲基壳聚糖 | 阿霉素 | 氨基和羧基 | 53.02 | 16.77 | 肿瘤化疗 | [ |
聚乙二醇化羧甲基壳聚糖 | 阿霉素 | 叔氨基、氨基和羧基 | >36 | — | 肿瘤化疗 | [ |
海藻酸-精氨酸-壳聚糖 | 吡喹酮或伊维菌素 | 氨基和羧基 | — | — | 口服给药 | [ |
海藻酸-壳聚糖 | 甲苯达唑或伊维菌素 | 氨基和羧基 | — | — | 口服抗寄生虫给药 | [ |
聚合物骨架 | 药物 | pH敏感键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
羧甲基淀粉/季铵盐淀粉 | 牛血清蛋白 | 羧基 | — | 45.52 | 口服给药 | [ |
柠檬酸交联淀粉 | 姜黄素 | 羧基 | — | — | 口服给药 | [ |
胆固醇-咪唑-氧化淀粉 | 姜黄素 | 咪唑基 | 4.16 | 17.84 | 肿瘤化疗 | [ |
普鲁兰多糖 | 阿霉素 | 咪唑基 | 5.37~20.3 | 32.7~76.5 | 肿瘤化疗 | [ |
普鲁兰多糖 | 阿霉素 | 咪唑基 | 8.6~19.8 | 49.5~90.5 | 肿瘤化疗 | [ |
普鲁兰多糖 | 阿霉素 | 腙键 | 13.59~47.67 | — | 肿瘤化疗 | [ |
聚合物骨架 | 药物 | pH敏感键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
羧甲基淀粉/季铵盐淀粉 | 牛血清蛋白 | 羧基 | — | 45.52 | 口服给药 | [ |
柠檬酸交联淀粉 | 姜黄素 | 羧基 | — | — | 口服给药 | [ |
胆固醇-咪唑-氧化淀粉 | 姜黄素 | 咪唑基 | 4.16 | 17.84 | 肿瘤化疗 | [ |
普鲁兰多糖 | 阿霉素 | 咪唑基 | 5.37~20.3 | 32.7~76.5 | 肿瘤化疗 | [ |
普鲁兰多糖 | 阿霉素 | 咪唑基 | 8.6~19.8 | 49.5~90.5 | 肿瘤化疗 | [ |
普鲁兰多糖 | 阿霉素 | 腙键 | 13.59~47.67 | — | 肿瘤化疗 | [ |
聚合物骨架 | 药物 | pH敏感键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
透明质酸修饰二氧化硅 | 阿霉素和光敏剂玫瑰红 | 亚胺键 | 15.30和12.78 | 76.67和95.85 | 化疗与光动力联合治疗 | [ |
透明质酸修饰二氧化硅 | 阿霉素 | 腙键 | 14 | — | 肿瘤化疗 | [ |
透明质酸 | 阿霉素 | 腙键 | 约11~14 | — | 肿瘤化疗 | [ |
透明质酸-脱氧胆酸-组氨酸 | 紫杉醇 | 咪唑基 | 81.9 | 91.0 | 肿瘤化疗 | [ |
透明质酸 | 阿霉素和光敏剂二氢卟吩 | 腙键 | 7.34 | 73.40 | 化疗与光动力联合治疗 | [ |
透明质酸 | 阿霉素 | 腙键 | 28.2 | 79.2 | 肿瘤化疗 | [ |
聚合物骨架 | 药物 | pH敏感键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
透明质酸修饰二氧化硅 | 阿霉素和光敏剂玫瑰红 | 亚胺键 | 15.30和12.78 | 76.67和95.85 | 化疗与光动力联合治疗 | [ |
透明质酸修饰二氧化硅 | 阿霉素 | 腙键 | 14 | — | 肿瘤化疗 | [ |
透明质酸 | 阿霉素 | 腙键 | 约11~14 | — | 肿瘤化疗 | [ |
透明质酸-脱氧胆酸-组氨酸 | 紫杉醇 | 咪唑基 | 81.9 | 91.0 | 肿瘤化疗 | [ |
透明质酸 | 阿霉素和光敏剂二氢卟吩 | 腙键 | 7.34 | 73.40 | 化疗与光动力联合治疗 | [ |
透明质酸 | 阿霉素 | 腙键 | 28.2 | 79.2 | 肿瘤化疗 | [ |
聚合物骨架 | 药物 | pH敏感键 /基团 | 负载率 /% | 封装率 /% | 应用 方向 | 参考文献 |
---|---|---|---|---|---|---|
叶酸偶联明胶 | 伊立替康 | 酰胺键和 羧基 | 11.2 | — | 肿瘤 化疗 | [ |
角蛋白 | 阿霉素 | 腙键 | 11.3 | 58.4 | 肿瘤 化疗 | [ |
聚乙二醇化角蛋白 | 阿霉素 | 腙键 | 29.4 | — | 肿瘤 化疗 | [ |
聚乙二醇化角蛋白 | 阿霉素 | 酰胺键和 氨基 | 24.8 | — | 肿瘤 化疗 | [ |
羧甲基角蛋白 | 阿霉素 | 羧基和氨基 | 5.7~13.0 | >90.0 | 肿瘤 化疗 | [ |
角蛋白 | 阿霉素 | 氨基 | 30.0 | 92.0 | 肿瘤 化疗 | [ |
聚合物骨架 | 药物 | pH敏感键 /基团 | 负载率 /% | 封装率 /% | 应用 方向 | 参考文献 |
---|---|---|---|---|---|---|
叶酸偶联明胶 | 伊立替康 | 酰胺键和 羧基 | 11.2 | — | 肿瘤 化疗 | [ |
角蛋白 | 阿霉素 | 腙键 | 11.3 | 58.4 | 肿瘤 化疗 | [ |
聚乙二醇化角蛋白 | 阿霉素 | 腙键 | 29.4 | — | 肿瘤 化疗 | [ |
聚乙二醇化角蛋白 | 阿霉素 | 酰胺键和 氨基 | 24.8 | — | 肿瘤 化疗 | [ |
羧甲基角蛋白 | 阿霉素 | 羧基和氨基 | 5.7~13.0 | >90.0 | 肿瘤 化疗 | [ |
角蛋白 | 阿霉素 | 氨基 | 30.0 | 92.0 | 肿瘤 化疗 | [ |
聚合物骨架 | 药物 | pH敏感键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
羧化木质素 | BZL | 咪唑基 | 9~11 | 50~57 | 肿瘤化疗 | [ |
胺化木质素 | 10-羟基喜树碱 | 咪唑基 | 15.6 | — | 肿瘤化疗 | [ |
碱木质素 | 布地奈德 | 羧基 | — | 34~37 | 口服给药 | [ |
季铵化木质素 | 布洛芬 | 羧基 | 46 | 74 | 口服给药 | [ |
酰化木质素-甲基丙烯酸甲酯 | 布洛芬 | 羧基 | 15.98 | 19.01 | 口服给药 | [ |
木质素-胆固醇 | 叶酸 | 羧基 | — | 约67 | — | [ |
聚合物骨架 | 药物 | pH敏感键/基团 | 负载率/% | 封装率/% | 应用方向 | 参考文献 |
---|---|---|---|---|---|---|
羧化木质素 | BZL | 咪唑基 | 9~11 | 50~57 | 肿瘤化疗 | [ |
胺化木质素 | 10-羟基喜树碱 | 咪唑基 | 15.6 | — | 肿瘤化疗 | [ |
碱木质素 | 布地奈德 | 羧基 | — | 34~37 | 口服给药 | [ |
季铵化木质素 | 布洛芬 | 羧基 | 46 | 74 | 口服给药 | [ |
酰化木质素-甲基丙烯酸甲酯 | 布洛芬 | 羧基 | 15.98 | 19.01 | 口服给药 | [ |
木质素-胆固醇 | 叶酸 | 羧基 | — | 约67 | — | [ |
11 | RASTEGARI B, KARBALAEI-HEIDARI H R, ZEINALI S, et al. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: synthesis, characterization and cytotoxicity studies[J]. Colloids and Surfaces B: Biointerfaces, 2017, 158: 589-601. |
12 | BHATTA A, KRISHNAMOORTHY G, MARIMUTHU N, et al. Chlorin e6 decorated doxorubicin encapsulated chitosan nanoparticles for photo-controlled cancer drug delivery[J]. International Journal of Biological Macromolecules, 2019, 136: 951-961. |
13 | RIZWAN M, YAHYA R, HASSAN A, et al. pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications[J]. Polymers, 2017, 9(4): 137. |
14 | BAZBAN-SHOTORBANI S, HASANI-SADRABADI M M, KARKHANEH A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications[J]. Journal of Controlled Release, 2017, 253: 46-63. |
15 | XU Y, ZI Y, LEI J, et al. pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery[J]. Carbohydrate Polymers, 2020, 233: 115858. |
16 | FANG Z, PAN S, GAO P, et al. Stimuli-responsive charge-reversal nano drug delivery system: the promising targeted carriers for tumor therapy[J]. International Journal of Pharmaceutics, 2020, 575: 118841. |
17 | RAMASAMY T, RUTTALA H B, GUPTA B, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review[J]. Journal of Controlled Release, 2017, 258: 226-253. |
18 | SHI Z, LI Q, MEI L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy[J]. Chinese Chemical Letters, 2020, 31: 1345-1356. |
19 | BAHRAMI B, HOJJAT-FARSANGI M, MOHAMMADI H, et al. Nanoparticles and targeted drug delivery in cancer therapy[J]. Immunology Letters, 2017, 190: 64-83. |
20 | LI H, CUI Y, SUI J, et al. Efficient delivery of DOX to nuclei of hepatic carcinoma cells in the subcutaneous tumor model using pH-sensitive Pullulan-DOX conjugates[J]. ACS Applied Materials & Interfaces, 2015, 7(29): 15855-15865. |
21 | DENG H, LIU J, ZHAO X, et al. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of Doxorubicin[J]. Biomacromolecules, 2014, 15(11): 4281-4292. |
22 | ZHANG C, AN T, WANG D, et al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma[J]. Journal of Controlled Release, 2016, 226: 193-204. |
1 | MASOOD F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy[J]. Materials Science and Engineering, 2016, 60: 569-578. |
2 | ZHANG D, WANG L, ZHANG X, et al. Polymeric micelles for pH-responsive lutein delivery[J]. Journal of Drug Delivery Science and Technology, 2018, 45: 281-286. |
3 | LI C, WANG X, LI R, et al. Resveratrol-loaded PLGA nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time[J]. Journal of Drug Delivery Science and Technology, 2019, 54: 101369. |
4 | KALYANE D, RAVAL N, MAHESHWARI R, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer[J]. Materials Science and Engineering, 2019, 98: 1252-1276. |
5 | VRIGNAUD S, BENOIT J, SAULNIER P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles[J]. Biomaterials, 2011, 32(33): 8593-8604. |
6 | SUR S, RATHORE A, DAVE V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system[J]. Nano-Structures & Nano-Objects, 2019, 20: 100397. |
7 | RAO J P, GECKELER K E. Polymer nanoparticles: preparation techniques and size-control parameters[J]. Progress in Polymer Science, 2011, 36(7): 887-913. |
23 | WANG Y, KHAN A, LIU Y, et al. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs[J]. Carbohydrate Polymers, 2019, 223: 115061. |
24 | LIU Y, WANG W, YANG J, et al. pH-Sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery[J]. Asian Journal of Pharmaceutical Sciences, 2013, 8(3): 159-167. |
8 | GAO S, TANG G, HUA D, et al. Stimuli-responsive bio-based polymeric systems and their applications[J]. Journal of Materials Chemistry B, 2019, 7: 709-729. |
9 | WANG X, XU J, XU X, et al. pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor[J]. Materials Science and Engineering, 2020, 113: 111004. |
25 | JIA N, YE Y, WANG Q, et al. Preparation and evaluation of poly(L-histidine) based pH-sensitive micelles for intracellular delivery of doxorubicin against MCF-7/ADR cells[J]. Asian Journal of Pharmaceutical Sciences, 2017(5): 433-441. |
26 | ZHANG L, DING Y, WEN Q, et al. Synthesis of core-crosslinked zwitterionic polymer nano aggregates and pH/Redox responsiveness in drug controlled release[J]. Materials Science & Engineering, 2020, 106: 110288. |
27 | LI Y, QIU X, QIAN Y, et al. pH-Responsive lignin-based complex micelles: preparation, characterization and application in oral drug delivery[J]. Chemical Engineering Journal, 2017, 327: 1176-1183. |
28 | YU Z, MA L, YE S, et al. Construction of an environmentally friendly octenylsuccinic anhydride modified pH-sensitive chitosan nanoparticle drug delivery system to alleviate inflammation and oxidative stress[J]. Carbohydrate Polymers, 2020, 236: 115972. |
10 | ZHOU K, ZHU Y, CHEN X, et al. Redox- and MMP-2-sensitive drug delivery nanoparticles based on gelatin and albumin for tumor targeted delivery of paclitaxel[J]. Materials Science and Engineering, 2020, 114: 111006. |
29 | RAHIMI S, KHOEE S, GHANDI M. Development of photo and pH dual crosslinked coumarin-containing chitosan nanoparticles for controlled drug release[J]. Carbohydrate Polymers, 2018, 201: 236-245. |
30 | WANG F, LI J, TANG X, et al. Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2020, 190: 110925. |
31 | LI T, YANG J, LIU R, et al. Efficient fabrication of reversible pH-induced carboxymethyl chitosan nanoparticles for antitumor drug delivery under weakly acidic microenvironment[J]. International Journal of Biological Macromolecules, 2019, 126: 68-73. |
32 | XIE P, LIU P. pH-Responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release[J]. Carbohydrate Polymers, 2020, 236: 116093. |
33 | FERNANDES PATTA A C M, MATHEWS P D, MADRID R R M, et al. Polyionic complexes of chitosan-N-arginine with alginate as pH responsive and mucoadhesive particles for oral drug delivery applications[J]. International Journal of Biological Macromolecules, 2020, 148: 550-564. |
34 | MATHEWS P D, FERNANDES P A, GONCALVES J V, et al. Targeted drug delivery and treatment of endoparasites with biocompatible particles of pH-responsive structure[J]. Biomacromolecules, 2018, 19(2): 499-510. |
35 | XIE P, LIU P. Core-shell-corona chitosan-based micelles for tumor intracellular pH-triggered drug delivery: improving performance by grafting polycation[J]. International Journal of Biological Macromolecules, 2019, 141: 161-170. |
36 | ZHANG Y, CHI C, HUANG X, et al. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract[J]. Carbohydrate Polymers, 2017, 171: 242-251. |
37 | SUFI-MARAGHEH P, NIKFARJAM N, DENG Y, et al. Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 244-251. |
38 | RAYCHAUDHURI R, NAIK S, SHREYA A B, et al. Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: synthesis, nanoformulations and toxicological perspective[J]. International Journal of Biological Macromolecules, 2020, 161: 1189-1205. |
39 | WANG Y, LIU Y, LIU Y, et al. pH-sensitive pullulan-based nanoparticles for intracellular drug delivery[J]. Polym. Chem., 2014, 5(2): 423-432. |
40 | GUO H, LIU Y, WANG Y, et al. pH-Sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells[J]. Carbohydrate Polymers, 2014, 111: 908-917. |
41 | DENG B, XIA M, QIAN J, et al. Calcium phosphate-reinforced reduction-sensitive hyaluronic acid micelles for delivering paclitaxel in cancer therapy[J]. Molecular Pharmaceutics, 2017, 14(6): 1938-1949. |
42 | ZHAO X, JIA X, LIU L, et al. Double-cross-linked hyaluronic acid nanoparticles with pH/reduction dual-responsive triggered release and ph-modulated fluorescence for folate-receptor-mediated targeting visualized chemotherapy[J]. Biomacromolecules, 2016, 17(4): 1496-1505. |
43 | CHEN K, CHANG C, LIU Z, et al. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111166. |
44 | CHEN C, SUN W, WANG X, et al. pH-Responsive nanoreservoirs based on hyaluronic acid end-capped mesoporous silica nanoparticles for targeted drug delivery[J]. International Journal of Biological Macromolecules, 2018, 111: 1106-1115. |
45 | LIAO J, ZHENG H, FEI Z, et al. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin[J]. International Journal of Biological Macromolecules, 2018, 113: 737-747. |
46 | LIU Y, ZHOU C, WANG W, et al. CD44 receptor targeting and endosomal pH-sensitive dual functional hyaluronic acid micelles for intracellular paclitaxel delivery[J]. Molecular Pharmaceutics, 2016, 13(12): 4209-4221. |
47 | REN Q, LIANG Z, JIANG X, et al. Enzyme and pH dual-responsive hyaluronic acid nanoparticles mediated combination of photodynamic therapy and chemotherapy[J]. International Journal of Biological Macromolecules, 2019, 130: 845-852. |
48 | YIN T, WANG Y, CHU X, et al. Free adriamycin-loaded pH/reduction dual-responsive hyaluronic acid-adriamycin prodrug micelles for efficient cancer therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 35693-35704. |
49 | ELZOGHBY A O, SAMY W M, ELGINDY N A. Protein-based nanocarriers as promising drug and gene delivery systems[J]. Journal of Controlled Release, 2012, 161(1): 38-49. |
50 | DAS R P, CHAKRAVARTI S, PATEL S S, et al. Tuning the pharmacokinetics and efficacy of irinotecan (IRI) loaded gelatin nanoparticles through folate conjugation[J]. International Journal of Pharmaceutics, 2020, 586: 119522. |
51 | LIU P, WU Q, LI Y, et al. DOX-conjugated keratin nanoparticles for pH-sensitive drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 1012-1018. |
52 | ZHANG H, PEI M, LIU P. Keratin-based drug-protein conjugate with acid-labile and reduction-cleavable linkages in series for tumor intracellular DOX delivery[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 739-748. |
53 | ZHANG H, LIU P. Bio-inspired keratin-based core-crosslinked micelles for pH and reduction dual-responsive triggered DOX delivery[J]. International Journal of Biological Macromolecules, 2019, 123: 1150-1156. |
54 | LI Y, ZHI X, LIN J, et al. Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release[J]. Materials Science and Engineering, 2017, 73: 189-197. |
55 | ALUIGI A, BALLESTRI M, GUERRINI A, et al. Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity[J]. Materials Science and Engineering C, 2018, 90: 476-484. |
56 | ZHANG Y, SUN T, JIANG C. Biomacromolecules as carriers in drug delivery and tissue engineering[J]. Acta Pharmaceutica Sinica B, 2018, 8(1): 34-50. |
57 | 王才威, 张守玉, 杨东杰, 等. 木醋液制备及形成机理研究进展[J]. 化工进展, 2020, 39(9): 3723-3738. |
WANG Caiwei, ZHANG Shouyu, YANG Dongjie, et al. Research advance in preparation and formation mechanism of wood vinegar[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3723-3738. | |
58 | FIGUEIREDO P, FERRO C, KEMELL M, et al. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs[J]. Nanomedicine, 2017, 12(21): 2581-2596. |
59 | ZHAO J, ZHENG D, TAO Y, et al. Self-assembled pH-responsive polymeric nanoparticles based on lignin-histidine conjugate with small particle size for efficient delivery of anti-tumor drugs[J]. Biochemical Engineering Journal, 2020, 156: 107526. |
60 | SIPPONEN M H, LANGE H, AGO M, et al. Understanding lignin aggregation processes. A case study: budesonide entrapment and stimuli controlled release from lignin nanoparticles[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(7): 9342-9351. |
61 | CHENG L, DENG B, LUO W, et al. pH-Responsive lignin-based nanomicelles for oral drug delivery[J]. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5249-5258. |
62 | POURMOAZZEN Z, SADEGHIFAR H, YANG G, et al. Cholesterol-modified lignin: a new avenue for green nanoparticles, meltable materials, and drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2020, 186: 110685. |
[1] | TAN Jihuai, YU Min, ZHANG Tongtong, HUANG Nengkun, WANG Ziwen, ZHU Xinbao. Manufacturing of tannin polypropoxy ether carboxylates as efficient and improved migration resistance plasticizers for PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4847-4855. |
[2] | DAI Hang, GAO Ruixue, LI Yiguo, ZHU Jin, WANG Jinggang. Research progress on the synthesis of excellent impact and transparency polyesters with high glass transition temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2555-2565. |
[3] | LIU Huihui, SHI Xiaofei, WANG Qiannan, LIU Jinbo, ZHANG Jing. Preparation of pH responsive magnetic mesoporous nanoparticle drug loading system [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5390-5398. |
[4] | ZHANG Ke, QU Xiaohu, ZHU Yuanjun, LIN Jianying, ZHAO Zhihuan, FAN Huiling. Progress in preparation of metal-organic framework materials by grinding [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5465-5473. |
[5] | SONG Ying, GE Yuanyuan, HAN Yurong, ZHOU Qinyi, HUANG Laitao, ZHOU Jian. Preparation and properties of GPs-PVA/MCE multifunctional hybrid membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6287-6294. |
[6] | He ZHU, Yuecheng ZHANG, Jiquan ZHAO. Synthesis of nitriles and pyridine bases from bio-based small molecules by catalytic amination [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3077-3085. |
[7] | Haitian ZHAO,Xudong LI,Fengqin CAO,Yan NI,Lei YAO. Advances in preparation and application of chitosan-based nanoparticles for drug delivery system [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5057-5065. |
[8] | LIU Liu, ZHANG Songhong, YUN Junxian, YAO Kejian. Recent research progress on preparation methods, properties and applications of nanogels [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4726-4734. |
[9] | MENG Rongqian, LI Qiaoling, JIN Riya. Progress of titanium dioxide nanostructures as carriers in sustained and controlled drug-release delivery system [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3980-3987. |
[10] | CHEN Guangyu, WU Linbo, LI Bogeng. Progress in the synthesis of bio-based monomer 2,5-furandicarboxylic acid through 5-hydroxymethylfurfural route [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3146-3154. |
[11] | HONG Yazhen, ZHU Lihui. Synthesis,characterization and in vitro drug release performance of poly-L-lactide porous microspheres [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1130-1136. |
[12] | WANG Jinggang, LIU Xiaoqing, ZHU Jin. Research progress on the synthesis of bio-based aromatic platform chemical 2,5-furandicarboxylic acid [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 672-682. |
[13] | YE Baotong, SONG Jiahong, PENG Huanhuan, CHEN Jingxiao, CHEN Jinghua. Construction and application of novel pH responsive drug delivery system based on K5 polysaccharide [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 305-310. |
[14] | ZHOU Jinjie, WANG Xudong, SUN Yaqin, XIU Zhilong. Progress on microbial electrosynthesis of bio-based chemicals [J]. Chemical Industry and Engineering Progree, 2016, 35(10): 3005-3015. |
[15] | XU Xin, CHEN Xiao, XIAN Mo. Bio-based chemicals technology innovation and prospects facing resource and environment challenges [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3825-3831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |