Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2290-2297.DOI: 10.16085/j.issn.1000-6613.2020-0906
• Resources and environmental engineering • Previous Articles Next Articles
DAI Danyang1(), CHEN Yichen1(), ZHU Wenzhe1, SHI Lei1, CHENG Rong1, ZHENG Xiang1,2(), LI Jie1()
Received:
2020-05-25
Online:
2021-04-14
Published:
2021-04-05
Contact:
ZHENG Xiang,LI Jie
代丹阳1(), 陈逸琛1(), 祝文哲1, 石磊1, 程荣1, 郑祥1,2(), 李洁1()
通讯作者:
郑祥,李洁
作者简介:
代丹阳(1996—),女,硕士研究生,研究方向为膜分离技术。E-mail:基金资助:
CLC Number:
DAI Danyang, CHEN Yichen, ZHU Wenzhe, SHI Lei, CHENG Rong, ZHENG Xiang, LI Jie. Recycling of spent RO membranes: review of research status and progress[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2290-2297.
代丹阳, 陈逸琛, 祝文哲, 石磊, 程荣, 郑祥, 李洁. 废旧反渗透膜循环再利用研究现状与进展[J]. 化工进展, 2021, 40(4): 2290-2297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0906
污染类型 | 化学清洗方案 |
---|---|
无机污染 | |
CaCO3、MgCO3 | 碳酸盐化合物的结垢主要导致RO膜脱盐率下降,适用的化学清洗剂有盐酸、柠檬酸、磷酸、氢氧化铵、乙二胺四乙酸二钠(EDTA) |
CaSO4、BaSO4、CaF2 | 硫酸盐化合物的结垢通常不溶于多数清洗剂,因此要清洗更具挑战性。适用的化学清洗剂有盐酸、磷酸、硫酸、氢氧化钠、亚硫酸氢钠、氢氧化铵、三聚磷酸钠 |
CaPO4 | 表面活性剂和酸性溶液 |
铁、铝和Mg(OH)2 | 清洁剂的pH需根据氢氧化物类型调整。适用的化学清洗剂有盐酸、硫酸、弱酸如柠檬酸与非离子表面活性剂、亚硫酸氢钠[ |
金属氧化物 | 螯合剂,如EDTA、亚硫酸氢钠、柠檬酸、氢氧化铵 |
硅垢 | 螯合剂和碱性化合物,如EDTA、氢氧化钠、柠檬酸、氢氧化铵 |
胶体污染(如黏土) | 建议提高给水中胶体的化学稳定性。用于胶体污染的化学试剂有氢氧化钠、阴离子表面活性剂十二烷基硫酸钠(SDS)、亚硫酸氢钠、EDTA、柠檬酸与磷酸和盐酸[ |
有机污染(如腐殖酸) | 碱性剂、表面活性剂和螯合剂,如氢氧化钠、三聚磷酸钠、EDTA、十二烷基硫酸钠、十二烷基苯磺酸钠、过氧化氢和次氯酸钠[ |
生物污染 | 通常使用酸性和碱性清洁剂。EDTA可抑制生物膜形成。使用杀生物剂、螯合剂、表面活性剂、柠檬酸和酶可以减少生物污染。此外,适用的化学清洗剂有磷酸三钠、氢氧化钠、SDS、氯和福尔马林[ |
污染类型 | 化学清洗方案 |
---|---|
无机污染 | |
CaCO3、MgCO3 | 碳酸盐化合物的结垢主要导致RO膜脱盐率下降,适用的化学清洗剂有盐酸、柠檬酸、磷酸、氢氧化铵、乙二胺四乙酸二钠(EDTA) |
CaSO4、BaSO4、CaF2 | 硫酸盐化合物的结垢通常不溶于多数清洗剂,因此要清洗更具挑战性。适用的化学清洗剂有盐酸、磷酸、硫酸、氢氧化钠、亚硫酸氢钠、氢氧化铵、三聚磷酸钠 |
CaPO4 | 表面活性剂和酸性溶液 |
铁、铝和Mg(OH)2 | 清洁剂的pH需根据氢氧化物类型调整。适用的化学清洗剂有盐酸、硫酸、弱酸如柠檬酸与非离子表面活性剂、亚硫酸氢钠[ |
金属氧化物 | 螯合剂,如EDTA、亚硫酸氢钠、柠檬酸、氢氧化铵 |
硅垢 | 螯合剂和碱性化合物,如EDTA、氢氧化钠、柠檬酸、氢氧化铵 |
胶体污染(如黏土) | 建议提高给水中胶体的化学稳定性。用于胶体污染的化学试剂有氢氧化钠、阴离子表面活性剂十二烷基硫酸钠(SDS)、亚硫酸氢钠、EDTA、柠檬酸与磷酸和盐酸[ |
有机污染(如腐殖酸) | 碱性剂、表面活性剂和螯合剂,如氢氧化钠、三聚磷酸钠、EDTA、十二烷基硫酸钠、十二烷基苯磺酸钠、过氧化氢和次氯酸钠[ |
生物污染 | 通常使用酸性和碱性清洁剂。EDTA可抑制生物膜形成。使用杀生物剂、螯合剂、表面活性剂、柠檬酸和酶可以减少生物污染。此外,适用的化学清洗剂有磷酸三钠、氢氧化钠、SDS、氯和福尔马林[ |
再循环利用目的 | 膜转化条件 | 实验规模及转化结果 |
---|---|---|
再循环的UF/MF膜用于废水三级 处理 | 化学试剂:NaClO,KMnO4,NaOH,H2O2 试剂浓度范围:180~8208mg/L 暴露时间:1~2h 转化过程:通过主动过程,加压循环氧化溶液;通过被动过程,将膜浸泡在化学试剂中,无循环,无压力 | 中试规模 转化后测试:二级出水水质5~10NTU,10~30mg/L SS,电导率1500~2500μS/cm,工作压力0.4~0.56MPa |
再循环的UF膜用于水处理[ | 化学剂:NaOH,KMnO4,NaClO 试剂浓度范围:6250mg/L和62500mg/L(仅用于NaClO) 暴露时间:根据转化效果要求变化 转化过程:大气压力下被动转化 | 实验室规模 转化后测试:过滤液10mg/L牛血清白蛋白溶液,工作压力0.25MPa,2h |
再循环的RO/UF膜用于苦咸水 脱盐/细菌截留 | 化学试剂:4% NaClO 试剂浓度范围:1000~3286mg/L 暴露时间:0.5~144h pH:12(保持恒定) 转化过程:通过主动过程,溶液通过膜组件,通过被动过程,浸入游离氯溶液 | 实验室规模 转化后测试:过滤液为用于分子量截断测定的聚合物水溶液。1500mg/L NaCl。工作压力分别为1.38MPa和0.35MPa,25℃ |
再循环的UF膜用于水处理[ | 化学试剂:12.5% NaClO 试剂浓度范围:300000mg/L游离氯 pH:12 暴露时间:2.4h | 转化后测试:过滤试验溶液为10mg/L腐 殖酸和10mg/L牛血清白蛋白溶液,2000mg/L NaCl。工作压力0.1MPa |
再循环的NF/UF膜用于水处理[ | 化学试剂:10% NaClO 试剂浓度范围:124mg/L 暴露时间:1~410h 转化过程:被动转化,无压力 | 实验室规模 转化NF后测试:过滤液为2000mg/L NaCl,2000mg/L MgSO4,250mg/L葡萄糖。工作压力0.5MPa,温度30℃。 转化UF后测试:过滤液为牛血清白蛋白溶液。工作压力0.3MPa,温度25℃ |
再循环利用目的 | 膜转化条件 | 实验规模及转化结果 |
---|---|---|
再循环的UF/MF膜用于废水三级 处理 | 化学试剂:NaClO,KMnO4,NaOH,H2O2 试剂浓度范围:180~8208mg/L 暴露时间:1~2h 转化过程:通过主动过程,加压循环氧化溶液;通过被动过程,将膜浸泡在化学试剂中,无循环,无压力 | 中试规模 转化后测试:二级出水水质5~10NTU,10~30mg/L SS,电导率1500~2500μS/cm,工作压力0.4~0.56MPa |
再循环的UF膜用于水处理[ | 化学剂:NaOH,KMnO4,NaClO 试剂浓度范围:6250mg/L和62500mg/L(仅用于NaClO) 暴露时间:根据转化效果要求变化 转化过程:大气压力下被动转化 | 实验室规模 转化后测试:过滤液10mg/L牛血清白蛋白溶液,工作压力0.25MPa,2h |
再循环的RO/UF膜用于苦咸水 脱盐/细菌截留 | 化学试剂:4% NaClO 试剂浓度范围:1000~3286mg/L 暴露时间:0.5~144h pH:12(保持恒定) 转化过程:通过主动过程,溶液通过膜组件,通过被动过程,浸入游离氯溶液 | 实验室规模 转化后测试:过滤液为用于分子量截断测定的聚合物水溶液。1500mg/L NaCl。工作压力分别为1.38MPa和0.35MPa,25℃ |
再循环的UF膜用于水处理[ | 化学试剂:12.5% NaClO 试剂浓度范围:300000mg/L游离氯 pH:12 暴露时间:2.4h | 转化后测试:过滤试验溶液为10mg/L腐 殖酸和10mg/L牛血清白蛋白溶液,2000mg/L NaCl。工作压力0.1MPa |
再循环的NF/UF膜用于水处理[ | 化学试剂:10% NaClO 试剂浓度范围:124mg/L 暴露时间:1~410h 转化过程:被动转化,无压力 | 实验室规模 转化NF后测试:过滤液为2000mg/L NaCl,2000mg/L MgSO4,250mg/L葡萄糖。工作压力0.5MPa,温度30℃。 转化UF后测试:过滤液为牛血清白蛋白溶液。工作压力0.3MPa,温度25℃ |
膜元件 | 组成 | 近似含碳量/% |
---|---|---|
外壳 | 玻璃纤维 | 30~50 |
饲料间隔 | PP塑料 | 85.7 |
渗透垫片 | 聚酯纤维 | 62.5 |
膜片(薄膜复合材料) | 芳香族聚酰胺(0.2μm) | 71.6 |
微孔聚砜(40μm) | 73.7 | |
聚酯支架(120μm) | 62.5 | |
渗透管/端盖 | ABS | 88.3 |
胶水 | 环氧树脂 | 62.2 |
橡胶O形圈 | EPDM | 83.6 |
膜元件 | 组成 | 近似含碳量/% |
---|---|---|
外壳 | 玻璃纤维 | 30~50 |
饲料间隔 | PP塑料 | 85.7 |
渗透垫片 | 聚酯纤维 | 62.5 |
膜片(薄膜复合材料) | 芳香族聚酰胺(0.2μm) | 71.6 |
微孔聚砜(40μm) | 73.7 | |
聚酯支架(120μm) | 62.5 | |
渗透管/端盖 | ABS | 88.3 |
胶水 | 环氧树脂 | 62.2 |
橡胶O形圈 | EPDM | 83.6 |
1 | EDUARDO C, AMARAL M, CRISTINA S. Extending the life-cycle of reverse osmosis membranes: a review[J]. Waste Management and Research, 2017, 35(5): 456-470. |
2 | PONTIE M, AWAD S, TAZEROUT M, et al. Recycling and energy recovery solutions of end-of-life reverse osmosis (RO) membrane materials: a sustainable approach[J]. Desalination, 2017, 423: 30-40. |
3 | 罗美莲, 陈朝猛. 再生废弃反渗透膜的性能分析[J]. 山东工业技术, 2018(17): 55. |
LUO M L, CHEN C M. Performance analysis of recycled waste reverse osmosis membrane[J]. Shandong Industrial Technology, 2018(17): 55. | |
4 | LANDABURU J, GARCIA R, MOLINA S, et al. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination[J]. Desalination, 2016, 393: 16-30. |
5 | LAWLER W, ALVAREZ J, LESLIE G, et al. Comparative life cycle assessment of end-of-life options for reverse osmosis membranes[J]. Desalination, 2015, 357: 45-54. |
6 | MCMANUS M C, TAYLOR C M. The changing nature of life cycle assessment[J]. Biomass and Bioenergy, 2015, 82: 13-26. |
7 | SCHROTTER J C, RAPENNE S, LEPARC J, et al. Current and emerging developments in desalination with reverse osmosis membrane systems[J]. Comprehensive Membrane Science and Engineering, 2010, 2: 35-65. |
8 | KOO T, LEE Y J, SHEIKHOLESLAMI R. Silica fouling and cleaning of reverse osmosis membranes[J]. Desalination, 2001, 139(1): 43-56. |
9 | MALAEB L, AYOUB G M. Reverse osmosis technology for water treatment: state of the art review[J]. Desalination, 2011, 267(1): 1-8. |
10 | MATIN A, KHAN Z, ZAIDI S M, et al. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention[J]. Desalination, 2011, 281: 1-16. |
11 | ANG W S, YIP N Y, TIRAFERRI L, et al. Chemical cleaning of RO membranes fouled by wastewater effluent: achieving higher efficiency with dual-step cleaning[J]. Journal of Membrane Science, 2011, 382(1): 100-106. |
12 | ANG W S, TIRAFERRI A. Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent[J]. Journal of Membrane Science, 2011, 376(1): 196-206. |
13 | MOHAMEDOU E, PENATE D, VINCE F, et al. New lives for old reverse osmosis (RO) membranes[J]. Desalination, 2010, 253: 62–70. |
14 | PRINCE C, CRAN M, CLECH C, et al. Reuse and recycling of used desalination membranes[C]// OzWater '11. Adelaide, 2011: 190. |
15 | ANNE O, DOMINIQUE T, PASCAL J, et al. Nanofiltration of seawater: fractionation of mono- and multi-valent cations[J]. Desalination, 2001, 140(1): 67-77. |
16 | CADOTTE J, FORESTER R, KIM M, et al. Nanofiltration membranes broaden the use of membrane separation technology[J]. Desalination, 1988, 70(1): 77-88. |
17 | WANG X L, SHANG W J, WANG D X, et al. Characterization and applications of nanofiltration membranes: state of the art[J]. Desalination, 2009, 236(1): 316-326. |
18 | VAN B, VANDECASTEELE C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry[J]. Environmental Pollution, 2003, 122(3): 435-445. |
19 | TNG K H, ANTONY A, WANG Y, et al. Membrane ageing during water treatment: mechanisms, monitoring, and control[M]//Advances in Membrane Technologies for Water Treatment. UK: Woodhead Publishing, 2015: 349-378. |
20 | PENATE B, LOURDES G. Current trends and future prospects in the design of seawater reverse osmosis desalination technology[J]. Desalination, 2012, 284: 1-8. |
21 | VEZA J M, RODRIGUEZ J. Second use for old reverse osmosis membranes: wastewater treatment[J]. Desalination, 2003, 157(1): 65-72. |
22 | 黄延平, 靖大为, 王文凤. 氧化改性型纳滤膜元件性能的稳定性分析[J]. 工业水处理, 2015, 35(1): 29-31. |
HUANG Y P, JING D W, WANG W F. Analysis of the performance stability of oxidation-modified nanofiltration components[J]. Industrial Water Treatment, 2015, 35(1): 29-31. | |
23 | 连冠楠. 废弃聚酰胺反渗透膜纳滤功能化及其脱盐浓缩过程研究[D]. 杭州: 浙江工业大学, 2016. |
LIAN G N. Study on nanofiltration using abandoned polyamide reverse osmosis membrane and desalination and concentration[D]. Hangzhou: Zhejiang University of Technology, 2016. | |
24 | RODRIGUEZ J, VICTORIA J, TRUJILLO O, et al. Reuse of reverse osmosis membranes in advanced wastewater treatment[J]. Desalination, 2002, 150(3): 219-225. |
25 | AMBROSI A, TESSARO I C. Study on potassium permanganate chemical treatment of discarded reverse osmosis membranes aiming their reuse[J]. Separation Science and Technology, 2013, 48(10): 1537-1543. |
26 | RAVAL H D, CHAUHAN V R, RAVAL A H, et al. Rejuvenation of discarded RO membrane for new applications[J]. Desalination and Water Treatment, 2012, 48(1/2/3): 349-359. |
27 | PONTIE Maxime. Old RO membranes: solutions for reuse[J]. Desalination and Water Treatment, 2015, 53(6): 1492-1498. |
28 | GARCIA R, LANDABURU J, LEJARAZU A, et al. Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential[J]. Desalination, 2019, 457: 133-143. |
29 | 辛永光, 张平, 严丹燕. 一种废弃反渗透膜元件的再生方法及其装置: CN201110408407.4[P]. 2014-01-15. |
XIN Y G, ZHANG P, YAN D Y. Regenerating method and device of abandoned reverse osmosis membrane element: CN201110408407.4[P]. 2014-01-15. | |
30 | 覃浩律. 废弃卷式聚酰胺反渗透膜元件的再生及运行性能研究[D]. 长沙: 长沙理工大学, 2015. |
QIN H L. The research on regeneration and operation properties of abandoned rolled polyamide reverse osmosis membrane element[D]. Changsha: Changsha University of Science and Technology, 2015. | |
31 | MORADI M, PIHLAJAMAKI A, HESAMPOUR M, et al. End-of-life RO membranes recycling: reuse as NF membranes by polyelectrolyte layer-by-layer deposition[J]. Journal of Membrane Science, 2019,584: 300-308. |
32 | LAWLER W, WIJAYA T, ANTONY A, et al. Reuse of reverse osmosis desalination membranes[C]// Proceedings of the IDAWC'11. Perth, 2011: 4-9. |
33 | LAWLER W, ANTONY A, CRAN M J, et al. Production and characterization of UF membranes by chemical conversion of used RO membranes[J]. Journal of Membrane Science, 2013, 447(22): 203-211. |
34 | GARCIA R, LANDABURU J, MOLINA S, et al. Transformation of end-of-life RO membranes into NF and UF membranes: evaluation of membrane performance[J]. Journal of Membrane Science, 2015, 495: 305-315. |
35 | LAWLER W, BRADFORD Z, CRAN M J, et al. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes[J]. Desalination, 2012, 299(4): 103-112. |
36 | GOODSHIP V. Introduction to plastics recycling[M]. Smithers Rapra Press, 2007: 46. |
37 | WELLE F. Twenty years of PET bottle to bottle recycling—An overview[J]. Resources Conservation and Recycling, 2011, 55(11): 865-875. |
38 | AROSTEGUI A, SARRIONANDIA M, AURREKOETXEA J, et al. Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile-butadiene-styrene copolymer[J]. Polymer Degradation and Stability, 2006, 91(11): 2768-2774. |
39 | GARCÍA D, VEGAS I, CACHO I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete[J]. Construction and Building Materials, 2014, 64(12): 293-300. |
40 | MERAN C, OZTURK O, YUKSEL M. Examination of the possibility of recycling and utilizing recycled polyethylene and polypropylene[J]. Materials and Design, 2008, 29(3): 701-705. |
41 | FuturENVIRO. LIFE+REMEMBRANE: Recuperación de las membranas de ósmosis inversa al final de su vida útil[EB/OL]. [2019-07-14]. . |
42 | Releach. Releach project successfully launched[EB/OL]. [2019-07-14]. . |
43 | TransfMEM. Análisis económico y ambiental del reciclaje de membranas de ósmosis inversa[EB/OL]. [2019-10-10]. . |
44 | Intemem. Reactores de biopelículas en membranas recicladas: una alternativa biológica sostenible para la eliminación de microcistinas[EB/OL]. [2019-07-14]. . |
45 | Foundation Skyjuice. Safe water kiosks[EB/OL]. [2019-07-14]. . |
46 | UNESCO Centre for Membrane Science and Technology. The membrane end-of-life (MemEOL) tool is now online[EB/OL]. [2019-07-14]. . |
47 | WRISBERG N, HAES H A U D, TRIEBSWETTER U, et al. Analytical tools for environmental design and management in a systems perspective[M]. Germany: Springer Netherlands, 2002: 221. |
48 | EDUARDO C D, AMARAL M, CRISTINA S. Extending the life-cycle of reverse osmosis membranes: a review[J]. Waste Management and Research, 2017, 35(5): 456-470. |
49 | MAHMOOD S, SAMAN M Z, YUSOF N M. Life cycle assessment of membrane system for wastewater treatment: a review and further research[J]. Applied Mechanics and Materials, 2013, 315: 186-191. |
50 | ZHOU J, CHANG W C, FANE A G. Environmental life cycle assessment of reverse osmosis desalination: the influence of different life cycle impact assessment methods on the characterization results[J]. Desalination, 2011, 283: 227-236. |
51 | MAHMOOD S, SAMAN M Z, YUSOF N M. Proposed framework for assessing the sustainability of membrane life cycle [J]. Procedia CIRP, 2015, 26: 35-39. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[6] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[7] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[8] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[9] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[10] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[11] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[12] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[13] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[14] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[15] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |