Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2060-2069.DOI: 10.16085/j.issn.1000-6613.2020-2176
• Special column:Industrial catalysis • Previous Articles Next Articles
LIANG Hairui1(), WANG Li2, LIU Guozhu2(
)
Received:
2020-11-02
Online:
2021-04-14
Published:
2021-04-05
Contact:
LIU Guozhu
通讯作者:
刘国柱
作者简介:
梁海瑞(1995—),男,硕士,研究方向为纳米催化。E-mail:基金资助:
CLC Number:
LIANG Hairui, WANG Li, LIU Guozhu. A review of recent development on catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2060-2069.
梁海瑞, 王涖, 刘国柱. 氢氧直接合成过氧化氢用催化剂的研究进展[J]. 化工进展, 2021, 40(4): 2060-2069.
1 | CIRIMINNA R, ALBANESE L, MENEGUZZO F, et al. Hydrogen peroxide: a key chemical for today's sustainable development[J]. ChemSusChem, 2016, 9(24): 3374-3381. |
2 | LACY F, KAILASAM M T, O'CONNOR D T, et al. Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity[J]. Hypertension, 2000, 36(5): 878-884. |
3 | NUGRAHA M, TSAI M C, SU W N, et al. Descriptor study by density functional theory analysis for the direct synthesis of hydrogen peroxide using palladium-gold and palladium-mercury alloy catalysts[J]. Mol. Syst. Des. Eng., 2018, 3(6): 896-907. |
4 | CHINTA S, LUNSFORD J H. A mechanistic study of H2O2 and H2O formation from H2 and O2 catalyzed by palladium in an aqueous medium[J]. J. Catal., 2004, 225(1): 249–255. |
5 | LIU G, LIANG H, TIAN Y, et al. Direct synthesis of hydrogen peroxide over Pd nanoparticles embedded between HZSM-5 nanosheets layers[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2577-2586. |
6 | FORD D C, NILEKAR A U, XU Y, et al. Partial and complete reduction of O2 by hydrogen on transition metal surfaces[J]. Surf. Sci., 2010, 604(19/20): 1565-1575. |
7 | TIAN P F, OUYANG L K, XU X C, et al. Density functional theory study of direct synthesis of H2O2 from H2 and O2 on Pd(111), Pd(100), and Pd(110) surfaces[J]. Chin. J. Catal., 2013, 34(5): 1002-1012. |
8 | OUYANG L, TIAN P F, DA G J, et al. The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts: interfaces of Pd and PdO domains[J]. J. Catal., 2015, 321(5): 70-80. |
9 | NOMURA Y, ISHIHARA T, HATA Y, et al. Nanocolloidal Pd-Au as catalyst for the direct synthesis of hydrogen peroxide from H2 and O2[J]. ChemSusChem., 2008, 1(7): 619-621. |
10 | STERCHELE S, BIASI P, CENTOMO P, et al. Pd-Au and Pd-Pt catalysts for the direct synthesis of hydrogen peroxide in absence of selectivity enhancers[J]. Applied Catalysis A: General, 2013, 468: 160-174. |
11 | NTAINJUA E N, FREAKLEY S J, HUTCHINGS G J. Direct synthesis of hydrogen peroxide using ruthenium catalysts[J]. Top. Catal., 2012, 55(11/12/13): 718-722. |
12 | OTTO T, RAMALLO-LÓPEZ J M, GIOVANETTI L J, et al. Synthesis of stable monodisperse AuPd, AuPt, and PdPt bimetallic clusters encapsulated within LTA-zeolites[J]. J. Catal., 2016, 342: 125-137. |
13 | LI G, EDWARDS J, CARLEY A F, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au-Pd catalysts[J]. Catal. Today, 2007, 122(3/4): 361-364. |
14 | EDWARDS J K, HUTCHINGS G J. Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide[J]. Angew. Chem.: Int. Ed., 2008, 47(48): 9192-9198. |
15 | NUGRAHA M, TSAI M C, RICK J, et al. DFT study reveals geometric and electronic synergisms of palladium-mercury alloy catalyst used for hydrogen peroxide formation[J]. Applied Catalysis A: General, 2017, 547: 69-74. |
16 | EDWARDS J K, PRITCHARD J, LU L, et al. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts[J]. Angew. Chem.: Int. Ed., 2014, 53(9): 2381-2384. |
17 | FREAKLEY S J, HE Q, HARRHY J H, et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity[J]. Science, 2016, 351(6276): 965-968. |
18 | TIAN P F, XU X Y, AO C, et al. Direct and selective synthesis of hydrogen peroxide over palladium-tellurium catalysts at ambient pressure[J]. ChemSusChem, 2017, 10(17): 3342-3346. |
19 | PIZZUTILO E, FREAKLEY S J, CHEREVKO S, et al. Gold-palladium bimetallic catalyst stability: consequences for hydrogen peroxide selectivity[J]. ACS Catal., 2017, 7(9): 5699-5705. |
20 | LIANG H R, TIAN Y J, ZHANG B F, et al. Direct synthesis of hydrogen peroxide on Pd nanosheets with edge decorated by Au nanoparticles[J]. Green Chemical Engineering, 2020. DOI: 10.1016/J.gce. 2020.09.012. |
21 |
SALAMA T M, ALI I O, HANAFY A I, et al. A novel synthesis of NaA zeolite encapsulated iron(![]() |
22 | EDWARDS J K, SOLSONA B, LANDON P, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd/Fe2O3 catalysts[J]. J. Mater. Chem., 2005, 15(43): 4595-4600. |
23 | LEE S, CHUNG Y M. An efficient Pd/C catalyst design based on sequential ligand exchange method for the direct synthesis of H2O2[J]. Mater. Lett., 2019, 234: 58-61. |
24 | ISHIHARA T, OHURA Y, YOSHIDA S, et al. Synthesis of hydrogen peroxide by direct oxidation of H2 with O2 on Au/SiO2 catalyst[J]. Applied Catalysis A: General, 2005, 291(1-2): 215-221. |
25 | FREAKLEY S J, LEWIS R J, MORGAN D J, et al. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions[J]. Catal. Today, 2015, 248: 10-17. |
26 | LEI J J, SONG H T, WEI Y B, et al. A novel strategy to enhance hydrothermal stability of Pd-doped organosilica membrane for hydrogen separation[J]. Microporous and Mesoporous Materials, 2017, 253: 55-63. |
27 | GALLINA G, GARCIA-SERNA J, SALMI T O, et al. Bromide and acids: a comprehensive study on their role on the hydrogen peroxide direct synthesis[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13367-13378. |
28 | WILSON N M, FLAHERTY D W. Mechanism for the direct synthesis of H2O2 on Pd clusters: heterolytic reaction pathways at the liquid-solid interface[J]. J. Am. Chem. Soc., 2016, 138(2): 574-586. |
29 | PARK S, JUNG J C, SEO J G, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalysts supported on SO3H-functionalized SiO2 and TiO2[J]. Catalysis Letters, 2009, 130(3/4): 604-607. |
30 | KIM J, CHUNG Y M, KANG S M, et al. Palladium nanocatalysts immobilized on functionalized resin for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. ACS Catal., 2012, 2(6): 1042-1048. |
31 | LEWIS R J, EDWARDS J K, FREAKLEY S J, et al. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13287-13293. |
32 | RATCHANANUSORN W, GUDARZI D, TURUNEN I. Catalytic direct synthesis of hydrogen peroxide in a novel microstructured reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 84: 24-30. |
33 | BLANCO-BRIEVA G, MONTIEL-ARGAIZ M, DESMEDT F, et al. Effect of the acidity of the groups of functionalized silicas on the direct synthesis of H2O2[J]. Top Catal., 2017, 60(15/16): 1151-1155. |
34 | LANDON P, COLLIER P J, CARLEY A F, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts[J]. Phys. Chem. Chem. Phys., 2003, 5(9): 1917-1923. |
35 | LARI G M, PUÉRTOLAS B, SHAHROKHI M, et al. Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: The key role of the ligand[J]. Angew. Chem. Int. Ed., 2017, 56(7): 1775-1779. |
36 | SIERRA-SALAZAR A F, LI W S J, BATHFIELD M, et al. Hierarchically porous Pd/SiO2 catalyst by combination of miniemulsion polymerisation and sol-gel method for the direct synthesis of H2O2[J]. Catal. Today, 2018, 306: 16-22. |
37 | EDWIN N N, PICCININI M, PRITCHARD J C A, et al. Effect of halide and acid additives on the direct synthesis of hydrogen peroxide using supported gold-palladium catalysts[J]. ChemSusChem, 2009, 2(6): 575-580. |
38 | CENTOMO P, MENEGHINI C, STERCHELE S, et al. EXAFS in situ: the effect of bromide on Pd during the catalytic direct synthesis of hydrogen peroxide[J]. Catal. Today, 2015, 248: 138-141. |
39 | MELADA S, RIODA R, MENEGAZZO F, et al. Direct synthesis of hydrogen peroxide on zirconia-supported catalysts under mild conditions[J]. J. Catal., 2006, 239(2): 422-430. |
40 | PARK S, KIM T J, CHUNG Y M, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized SBA-15[J]. Catalysis Letters, 2009, 130(3/4): 296-300. |
41 | KIM S, LEE D W, LEE K Y, et al. Effect of Pd particle size on the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd core-porous SiO2 shell catalysts[J]. Catalysis Letters, 2014, 144(5): 905-911. |
42 | LEE J W, KIM J K, KANG T H, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on heteropolyacid-containing ordered mesoporous carbon[J]. Catal. Today, 2017, 293: 49-55. |
43 | SEO M G, KIM S, JEONG H E, et al. A yolk-shell structured Pd@void@ZrO2 catalyst for direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. J. Mol. Catal. A: Chem., 2016, 413: 1-6. |
44 | PARK S, SEO J G, JUNG J C, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalysts supported on TiO2-ZrO2 mixed metal oxides[J]. Catalysis Communications, 2009, 10(13): 1762-1765. |
45 | TORRENTE-MURCIANO L, HE Q, HUTCHINGS G J, et al. Enhanced Au-Pd activity in the direct synthesis of hydrogen peroxide using nanostructured titanate nanotube supports[J]. ChemCatChem, 2014, 6(9): 2531-2534. |
46 | SEO M G, LEE D W, HAN S S, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladium-nanocrystal-grafted SiO2 nanobeads[J]. ACS Catal., 2017, 7(4): 3039-3048. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 966
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 636
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |