Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2070-2081.DOI: 10.16085/j.issn.1000-6613.2020-2443
• Special column:Industrial catalysis • Previous Articles Next Articles
ZHOU Xiantai1(), XUE Can1, JI Hongbing2,3()
Received:
2020-12-03
Online:
2021-04-14
Published:
2021-04-05
Contact:
JI Hongbing
通讯作者:
纪红兵
作者简介:
周贤太(1974—),男,副教授,研究方向为仿生催化。E-mail:基金资助:
CLC Number:
ZHOU Xiantai, XUE Can, JI Hongbing. Progress on the regulation strategy of free radicals in the selective oxidation of hydrocarbons and its industrial application[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2070-2081.
周贤太, 薛灿, 纪红兵. 烃类选择氧化过程中自由基的调控策略与工业氧化应用研究进展[J]. 化工进展, 2021, 40(4): 2070-2081.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2443
原料 | 产物 | 反应条件 | 转化率/% | 选择性/% | 典型工艺 | ||
---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 催化剂 | |||||
异丁烷 | 叔丁基过氧化氢 | 140 | 3.5 | 引发剂 | 25 | 60 | Oxirane |
环己烷 | 环己醇和环己酮 | 165 | 1.5 | Co和Mn盐 | 5 | 85 | DuPont |
甲苯 | 苯甲酸 | 165 | 1.0 | Co和Mn盐 | 90 | 95 | Amoco |
对二甲苯 | 对二苯甲酸 | 200 | 3.0 | Co和Mn盐 | 95 | 90 | Amoco |
异丙苯 | 异丙苯过氧化氢 | 140 | 0.5 | 引发剂 | 30 | 95 | Oxirane |
原料 | 产物 | 反应条件 | 转化率/% | 选择性/% | 典型工艺 | ||
---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 催化剂 | |||||
异丁烷 | 叔丁基过氧化氢 | 140 | 3.5 | 引发剂 | 25 | 60 | Oxirane |
环己烷 | 环己醇和环己酮 | 165 | 1.5 | Co和Mn盐 | 5 | 85 | DuPont |
甲苯 | 苯甲酸 | 165 | 1.0 | Co和Mn盐 | 90 | 95 | Amoco |
对二甲苯 | 对二苯甲酸 | 200 | 3.0 | Co和Mn盐 | 95 | 90 | Amoco |
异丙苯 | 异丙苯过氧化氢 | 140 | 0.5 | 引发剂 | 30 | 95 | Oxirane |
1 | 纪红兵, 佘远斌. 绿色氧化与还原[M]. 北京: 中国石化出版社, 2005: 205. |
JI H B, SHE Y B. Green oxidation & reduction[M]. Beijing: China Petrochemical Press, 2005: 205. | |
2 | STAHL S S, JIAO N. Green oxidation in organic synthesis[M]. Hoboken: John Wiley & Sons Inc., 2019: 156. |
3 | 金中豪, 周海波, 王仰东, 等. 由烃加工到烃合成:催化技术进展[J]. 科学通报, 2018, 63(19): 1852-1861. |
JIN Zhonghao, ZHOU Haibo, WANG Yangdong, et al. From hydrocarbon processing to hydrocarbon synthesis: advances in catalytic technology[J]. Chinese Science Bulletin, 2018, 63(19): 1852-1861. | |
4 | HONG C, MA J Q, LI M C, et al. Ferric nitrate-catalyzed aerobic oxidation of benzylic sp(3) C—H bonds of ethers and alkylarenes[J]. Tetrahedron, 2017, 73 (21): 3002-3009. |
5 | YU J W, MAO, S, WANG Y Q. Copper-catalyzed base-accelerated direct oxidation of C—H bond to synthesize benzils, isatins, and quinoxalines with molecular oxygen as terminal oxidant[J]. Tetrahedron Letters, 2015, 56(12): 1575-1580. |
6 | PAMIN K, POZZI G, TABOR E, et al. Oxidation of cycloalkanes with molecular oxygen in the presence of salen metallocomplexes in thermomorphic conditions[J]. Catalysis Communications, 2013, 39: 102-105. |
7 | ZHANG Q, GORDEN J D, GOLDSMITH C R. C—H oxidation by H2O2 and O2 catalyzed by a non-heme iron complex with a sterically encumbered tetradentate N-donor ligand[J]. Inorganic Chemistry, 2013, 52(23): 13546-13554. |
8 | HAYASHI Y, KOMIYA N, SUZUKI K, et al. Copper-catalyzed aerobic oxidative functionalization of C—H bonds of alkanes in the presence of acetaldehyde under mild conditions[J]. Tetrahedron Letters, 2013, 54(21): 2706-2709. |
9 | KANTAM M L, SREEKANTH P, RAO K K, et al. An improved process for selective liquid-phase air oxidation of toluene[J]. Catalysis Letters, 2002, 81 (3/4): 223-232. |
10 | SHULPIN G B, LACHTER E R. Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion[J]. Journal of Molecular Catalysis A, 2003, 197(1/2): 65-71. |
11 | BARTON D H R, GASTIGER M J, MOTHERWELL W B. A new procedure for the oxidation of saturated hydrocarbons[J]. Journal of the Chemical Society, Chemical Communications, 1983(1): 41-43. |
12 | BALVONINE G, BARTON D H R, BOIVIN J, et al. An efficient electrochemical process for the oxidation of saturated hydrocarbons: the Gif-Orsay system[J]. Jounral of the Chemical Soceity: Chemical Communications, 1986, 23: 1727-1729. |
13 | BARTON D H R, BEVIERE S D, CHAVASIRI W, et al. The functionalization of saturated hydrocarbons. Part 20. Alkyl hydroperoxides: reaction intermediates in the oxidation of saturated hydrocarbons by Gif-Type reactions and mechanistic studies on their formation[J]. Journal of the American Chemical Society, 1992,114: 2147-2156. |
14 | ISHII Y. A novel catalysis of N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n=2 or 3) in the oxidation of organic substrates with molecular oxygen[J]. Journal of Molecular Catalysis A, 1997, 117: 123-137. |
15 | PATIL R D, FUCHS B, TAHA N, et al. Solvent-free and selective autooxidation of alkylbenzenes catalyzed by Co/NHPI under phase transfer conditions[J]. Chemistry Select, 2016, 1(13): 3791-3796. |
16 | DENG W, LUO W P, TAN Z, et al. Remarkable effect of simple aliphatic alcohols on the controlled aerobic oxidation of toluene catalyzed by (T(p-Cl)PP)MnF/NHPI[J]. Journal of Molecular Catalysis A, 2013, 372: 84-89. |
17 | TNAY Y L, CHIBA S. Copper-catalyzed aerobic C—C bond cleavage of lactols with N-hydroxy phthalimide for synthesis of lactones[J]. Chemistry: an Asian Journal, 2015, 10(4): 873-877. |
18 | MIAO C X, ZHAO H Q, ZHAO Q Y, et al. NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes[J]. Catalysis Science and Technology, 2016, 6(5): 1378-1383. |
19 | HABIBI D, FARAJI A R, ARSHADI M, et al. Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide[J]. Applied Catalysis A, 2013, 466: 282-292. |
20 | BLANDEZ J F, NAVALÓN S, ÁLVARO M, et al. N-Hydroxyphthalimide anchored on diamond nanoparticles as a selective heterogeneous metal-free oxidation catalyst of benzylic hydrocarbons and cyclic alkenes by molecular O2[J]. ChemCatChem, 2018, 10(1): 198-205. |
21 | MAJUMDAR B, BHATTACHARYA T, SARMA T K. Gold nanoparticle-polydopamine-reduced graphene oxide ternary nanocomposite as an efficient catalyst for selective oxidation of benzylic C(sp3) —H bonds under mild conditions[J]. ChemCatChem, 2016, 8(10): 1825-1835. |
22 | GAO B, MENG S, YANG X. Synchronously synthesizing and immobilizing N-hydroxyphthalimide on polymer microspheres and catalytic performance of solid catalyst in oxidation of ethylbenzene by molecular oxygen[J]. Organic Process Research & Development, 2015, 19(10): 1374-1382. |
23 | ORLIŃSKA B, ZAWADIAK J. Aerobic oxidation of isopropylaromatic hydrocarbons to hydroperoxides catalyzed by N-hydroxyphthalimide[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 15-30. |
24 | LIU X F, LIN L, YE X Y, et al. Aerobic oxidation of benzylic sp3 C—H bonds through cooperative visible-light photoredox catalysis of N-hydroxyimide and dicyanopyrazine[J]. Asian Journal of Organic Chemistry, 2017, 6(4): 422-425. |
25 | MELONE L, FRANCHI P, LUCARINI M, et al. Sunlight induced oxidative photoactivation of N-hydroxyphthalimide mediated by naphthalene imides[J]. Advanced Synthesis & Catalysis, 2013, 355 (16): 3210-3220. |
26 | ZHAO Q M, CHEN K X, ZHANG W S, et al. Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues[J]. Journal of Molecular Catalysis A, 2015, 402: 79-82. |
27 | LIU G Y, TANG R R, WANG Z. Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide[J]. Catalysis Letters, 2014, 144(4): 717-722. |
28 | AMORATI R, LUCARINI M, MUGNAINI V, et al. Hydroxylamines as oxidation catalysts: thermochemical and kinetic studies[J]. The Journal of Organic Chemistry, 2003, 68(5): 1747-1754. |
29 | ZHANG Z G, GAO Y, LIU Y, et al. Organocatalytic aerobic oxidation of benzylic sp3 C—H bonds of ethers and alkylarenes promoted by a recyclable TEMPO catalyst[J]. Organic Letters, 2015, 17(21): 5492-5495. |
30 | GASTER E, KOZUCH S, PAPPO D. Selective aerobic oxidation of methylarenes to benzaldehydes catalyzed by N-hydroxyphthalimide and cobalt(Ⅱ) acetate in hexafluoropropan-2-ol[J]. Angewante Chemie: International Edition, 2017, 56(21): 5912-5915. |
31 | COLOMER I, CHAMBERLAIN A E R, HAUGHEY M B, et al. Hexafluoroisopropanol as a highly versatile solvent[J]. Nature Reviews Chemistry, 2017, 1(11): 0088. |
32 | DANTIGNANA V, MILAN M, CUSSÓ O, et al. Chemoselective aliphatic C—H bond oxidation enabled by polarity reversal[J]. ACS Central Science, 2017, 3(12): 1350-1358. |
33 | TAHA N, SASSON Y. Superior performance of NHPI cocatalyst in the autoxidation of methylbenzenes under solvent-free phase transfer conditions[J]. Organic Process Research & Development, 2010, 14(3): 701-704. |
34 | BACIOCCHI E, GERINI M F, LANZALUNGA O. Reactivity of phthalimide N-oxyl radical (PINO) toward the phenolic O—H bond. A kinetic study[J]. The Journal of Organic Chemistry, 2004, 69(25): 8963-8966. |
35 | GRANT J T., VENEGAS J M, MCDERMOTT W P, et al. Aerobic oxidations of light alkanes over solid metal oxide catalysts[J]. Chemical Reviews, 2018, 118(5): 2769-2815. |
36 | GONG Y T, LI M M, LI H R, et al. Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation[J]. Green Chemistry, 2015, 17(2): 715-736. |
37 | LIU P, LI G, CHANG W T, et al. Highly dispersed Pd nanoparticles supported on nitrogen-doped graphene with enhanced hydrogenation activity[J]. RSC Advances, 2015, 5(89): 72785-72792. |
38 | FU L L, ZHAO S F, CHEN Y, al et, One-pot synthesis of mesoporous silica hollow spheres with Mn-N-C integrated into the framework for ethylbenzene oxidation[J]. Chemical Communications, 2016, 52(32): 5577-5580. |
39 | MORI K, HARA T, MIZUGAKI T, et al. Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen[J]. Journal of the American Chemical Society, 2004, 126(34): 10657-10666. |
40 | DHAKSHINAMOORTHY A, ASIRI A M, HERANCE J R, et al. Metal organic frameworks as solid promoters for aerobic autoxidations[J]. Catalysis Today, 2018, 306: 2-8. |
41 | DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H. Metal-organic frameworks as catalysts for oxidation reactions[J]. Chemistry: a European Journal, 2016, 22(24): 8012-8024. |
42 | LONG J L, LIU H L, WU S J, et al. Selective oxidation of saturated hydrocarbons using Au-Pd alloy nanoparticles supported on metal-organic frameworks[J]. ACS Catalysis, 2013, 3(4): 647-654. |
43 | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
44 | UNNARKAT A P, SRIDHAR T, WANG H T, et al. Cobalt molybdenum oxide catalysts for selective oxidation of cyclohexane[J]. AIChE Journal, 2016, 62(12): 4384-4402. |
45 | MISTRI R, MAITI S, LLORCA J, et al. Copper ion substituted hercynite (Cu0.03Fe0.97Al2O4): a highly active catalyst for liquid phase oxidation of cyclohexane[J]. Applied Catlysis A, 2014, 485: 40-50. |
46 | 周贤太, 纪红兵. 金属卟啉仿生催化氧化合成有机化工产品[J]. 精细化工, 2013, 30(4): 425-432. |
ZHOU Xiantai, JI Hongbing. Synthesis of organic chemical products by metalloporphyrins-based biomimetic catalytic oxidation[J]. Fine Chemicals, 2013, 30(4): 425-432. | |
47 | CHE C M, LO V K Y, ZHOU C Y, et al. Selective functionalisation of saturated C—H bonds with metalloporphyrin catalysts[J]. Chemical Society Reviews, 2011, 40(4): 1950-1975. |
48 | JI H B, ZHOU X T. Biomimetic epoxidation of olefins catalyzed by metalloporphyrins with molecular oxygen, in Biomimetics based applications[M]. Vienna: In-Tech publishing, 2011. |
49 | JI H B, ZHOU X T. Biomimetic homogeneous oxidation catalyzed by metalloporphyrins with green oxidants[M]//Biomimetics, learning from natur. Vienna: In-Tech publishing, 2010. |
50 | MARIMUTHU A, ZHANG J W, LINIC S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state[J]. Science, 2013, 339(6127): 1590-1593. |
51 | WANG Z Y, GAO A L, CHEN P, et al. The construction of Mo6-δO3-x supported catalyst for low-temperature propylene gas-phase epoxidation by Cu modification[J]. Journal of Catalysis, 2018, 368: 120-133. |
52 | PANOV G I, STAROKON E V, PARFENOV M V, et al. Single turnover epoxidation of propylene by α-complexes (FeⅢ-O.)α on the surface of FeZSM-5 zeolite[J]. ACS Catalysis, 2016, 6(6): 3875-3879. |
53 | LI Y, ZHOU X T, CHEN S Y, et al. Direct aerobic liquid phase epoxidation of propylene catalyzed by Mn() porphyrin under mild conditions: evidence for the existence of both peroxide and Mn(Ⅳ)-oxo species from in situ characterizations[J]. RSC Advances, 2015, 5(38): 30014-30020. |
54 | ELLIS P E, LYONS J E. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins—The search for a suprabiotic system[J]. Coordination Chemistry Reviews, 1990, 105: 181-193. |
55 | LYONS J E, ELLIS P E, MYERS H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen[J]. Journal of Catalysis, 1995, 155(1): 59-73. |
56 | GUO C C, LIU X Q, LIU Y, et al. Studies of simple μ-oxo-bisiron(Ⅲ)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants[J]. Journal of Molecular Catalysis A, 2003, 192 (1/2): 289-294. |
57 | GUO C C, CHU M F, LIU Q, et al. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents[J]. Applied Catalysis A, 2003, 246(2): 303-309. |
58 | YUAN Y, JI H B, CHEN Y X, et al. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst[J]. Organic Process Research & Development, 2004, 8(3): 418-420. |
59 | WANG T, SHE Y B, FU H Y, et al. Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts[J]. Catalysis Today, 2016, 264: 185-190. |
60 | SHEN H M, WANG X, GUO A B, et al. Catalytic oxidation of cycloalkanes by porphyrin cobalt() through efficient utilization of oxidation intermediates[J]. Journal of Porphyrins and Phthalocyanines, 2020, 24(10): 1166-1173. |
61 | POŁTOWICZ J, HABER J. The oxyfunctionalization of cycloalkanes with dioxygen catalyzed by soluble and supported metalloporphyrins[J]. Journal of Molecular Catalysis A, 2004, 220(1): 43-51. |
62 | HABER J, MATACHOWSKI L, PAMIN K, et al. Manganese porphyrins as catalysts for oxidation of cyclooctane in Lyons system[J]. Journal of Molecular Catalysis A, 2000, 162(1/2): 105-109. |
63 | HUANG G, WANG A P, LIU S Y, et al. An efficient oxidation of toluene over Co()TPP supported on chitosan using air[J]. Catalysis Letters, 2007, 114 (3/4): 174-177. |
64 | HUANG G, LUO J, DENG C C, et al. Catalytic oxidation of toluene with molecular oxygen over manganese tetraphenylporphyrin supported on chitosan[J]. Applied Catlysis A, 2008, 338(1/2): 83-86. |
65 | SHEN H M, QI B, HU M Y, et al. Selective solvent-free and additive-free oxidation of primary benzylic C—H bonds with O2 catalyzed by the combination of metalloporphyrin with N-hydroxyphthalimide[J]. Catalysis Letters, 2020, 150(11): 3096-3111. |
66 | SHEN H M, LIU L, QI B, et al. Efficient and selective oxidation of secondary benzylic C—H bonds to ketones with O2 catalyzed by metalloporphyrins under solvent-free and additive-free conditions[J]. Molecular Catalysis, 2020, 493: 111102. |
67 | SHEN H M, HU M Y, LIU L, et al. Efficient and selective oxidation of tertiary benzylic C—H bonds with O2 catalyzed by metalloporphyrins under mild and solvent-free conditions[J]. Applied Catlysis A, 2020, 599: 117599. |
68 | HONG Y, FANG Y X, ZHOU X T, et al. Ionic liquid-modified Co/ZSM-5 catalyzed the aerobic oxidation of cyclohexane: toward improving the activity and selectivity[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 19832-19838. |
69 | PUNNIYAMURTHY T, VELUSAMY S, IQBAL J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen[J]. Chemical Reviews, 2005, 105(6): 2329-2363. |
70 | PAMIN K, TABOR E, GORECKA S, et al. Three generations of cobalt porphyrins as catalysts in the oxidation of cycloalkanes[J]. ChemSusChem, 2019, 12(3): 684-691. |
71 | LIU K X, LEI Y K, WANG G F. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes[J]. The Journal of Chemical Physcis, 2013, 139(20): 204306. |
72 | RUTKOWSKA-ZBIK D, TOKARZ-SOBIERAJ R, WITKO M. Quantum chemical description of oxygen activation process on Co, Mn, and Mo porphyrins[J]. Journal of Chemical Theory and Computation, 2007, 3(3): 914-920. |
73 | MEUNIER B, DE VISSER S P, SHAIK S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes[J]. Chemical Reviews, 2004, 104(9): 3947-3980. |
74 | JIANG J, WANG J X, ZHOU X T, et al. Mechanistic understanding towards the role of cyclohexene in enhancing the efficiency of manganese porphyrin-catalyzed aerobic oxidation of diphenylmethane[J]. European Journal of Inorganic Chemistry, 2018(23): 2666-2674. |
75 | CHEN H Y, LV M, ZHOU X Tet al. A novel system comprising metalloporphyrins and cyclohexene for the biomimetic aerobic oxidation of toluene[J]. Catalysis Communications, 2018, 109: 76-79. |
76 | JIANG J, LUO R C, ZHOU X T, et al. Metalloporphyrin-mediated aerobic oxidation of hydrocarbons in cumene: Co-substrate specificity and mechanistic consideration[J]. Molecular Catalysis, 2017, 440: 36-42. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[8] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[9] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[12] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |