Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 949-958.DOI: 10.16085/j.issn.1000-6613.2020-0622
• Materials science and technology • Previous Articles Next Articles
Yang JIAO(), Zhixing LI, Yingjie ZHANG, Kai WANG, Xiquan CHENG()
Received:
2020-04-20
Revised:
2020-06-16
Online:
2021-02-09
Published:
2021-02-05
Contact:
Xiquan CHENG
通讯作者:
程喜全
作者简介:
焦阳(1997—),男,硕士研究生,研究方向为聚乳酸分离膜材料开发及应用。E-mail:基金资助:
CLC Number:
Yang JIAO, Zhixing LI, Yingjie ZHANG, Kai WANG, Xiquan CHENG. Research progress on biodegradable membrane materials and their applications[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 949-958.
焦阳, 李之行, 张瑛洁, 王凯, 程喜全. 可生物降解分离膜材料及其应用研究进展[J]. 化工进展, 2021, 40(2): 949-958.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0622
膜材料 | 常用品牌/型号 | 材料价格 /CNY·kg-1 | 膜类型 | 操作压力 /MPa | 通量 /L·m-2·h-1 | 分离物质 | 分离效率 /% | 操作温度 /℃ | 操作 pH | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
PVDF | Solef 1015 | 约165 | 中空纤维膜 | — | 535 | 牛血清白蛋白(BSA) | 84 | — | — | [ |
PLA | Naturework 4032D | 约50 | 中空纤维膜 | 0.05~0.1 | 870.5 | 1000×10-6 BSA | 80.0 | 20 | 7 | [ |
PES | BASF E6020P | 约120 | 平板超滤膜 | 0.1 | 253.7 | 5g/L PEG20000 | 90.6 | — | — | [ |
CA | HJBN | 约100 | 平板超滤膜 | 0.15 | 183.51 | 1g/L BSA | 93.36 | 25 | 7.4 | [ |
聚酰胺(PA) | Aladdin (PIP/IPC) | 594 | 复合纳滤膜 | 0.6 | 46 | 1000×10-6 Na2SO4 | 97.1 | 25 | — | [ |
CS | 海力 | 100 | 复合纳滤膜 | 0.6 | 74.8 | 1000×10-6Na2SO4 | 93.3 | 25 | 7.4 | [ |
PAN | 台湾化纤 | 65 | 纳米纤维膜 | 重力驱动 | 11666 | 水包甲苯乳液 | >99.9 | — | — | [ |
PCL | 美国苏威 | 62 | 纳米纤维膜 | 重力驱动 | 3300 | 正己烷-水混合液 | 99.92 | — | — | [ |
膜材料 | 常用品牌/型号 | 材料价格 /CNY·kg-1 | 膜类型 | 操作压力 /MPa | 通量 /L·m-2·h-1 | 分离物质 | 分离效率 /% | 操作温度 /℃ | 操作 pH | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
PVDF | Solef 1015 | 约165 | 中空纤维膜 | — | 535 | 牛血清白蛋白(BSA) | 84 | — | — | [ |
PLA | Naturework 4032D | 约50 | 中空纤维膜 | 0.05~0.1 | 870.5 | 1000×10-6 BSA | 80.0 | 20 | 7 | [ |
PES | BASF E6020P | 约120 | 平板超滤膜 | 0.1 | 253.7 | 5g/L PEG20000 | 90.6 | — | — | [ |
CA | HJBN | 约100 | 平板超滤膜 | 0.15 | 183.51 | 1g/L BSA | 93.36 | 25 | 7.4 | [ |
聚酰胺(PA) | Aladdin (PIP/IPC) | 594 | 复合纳滤膜 | 0.6 | 46 | 1000×10-6 Na2SO4 | 97.1 | 25 | — | [ |
CS | 海力 | 100 | 复合纳滤膜 | 0.6 | 74.8 | 1000×10-6Na2SO4 | 93.3 | 25 | 7.4 | [ |
PAN | 台湾化纤 | 65 | 纳米纤维膜 | 重力驱动 | 11666 | 水包甲苯乳液 | >99.9 | — | — | [ |
PCL | 美国苏威 | 62 | 纳米纤维膜 | 重力驱动 | 3300 | 正己烷-水混合液 | 99.92 | — | — | [ |
1 | 孟广耀, 陈初升, 刘卫, 等. 陶瓷膜分离技术发展30年回顾与展望[J]. 膜科学与技术, 2011, 31(3): 86-95. |
MENG Guangyao, CHEN Chusheng, LIU Wei, et al. Ceramic membrane technology: 30 years retrospect and prospect[J]. Membrane Science and Technology, 2011, 31(3): 86-95. | |
2 | 代俊明, 孙秀花, 高昌录. 共混改性法对有机分离膜影响进展[J]. 化工进展, 2019, 38(S1): 159-165. |
DAI Junming, SUN Xiuhua, GAO Changlu. Advances on effects of blending modification on organic separation membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 159-165. | |
3 | 衣佳琪, 宫晓宇, 李树芬, 等. 废塑料产品处理技术研究进展[J]. 化工设计通讯, 2019, 45(7): 166-167. |
YI Jiaqi, GONG Xiaoyu, LI Shufen, et al. Research progress on processing technology of waste plastic products[J]. Chemical Engineering Design Communications, 2019, 45(7): 166-167. | |
4 | WILES D M, SCOTT G. Polyolefins with controlled environmental degradability[J]. Polymer Degradation and Stability, 2006, 91(7): 1581-1592. |
5 | 程继锋, 蒋团辉, 詹晓梅, 等. 超亲水聚偏氟乙烯中空纤维膜的制备及性能[J]. 高等学校化学学报, 2020, 41(2): 358-364. |
CHENG Jifeng, JIANG Tuanhui, ZHAN Xiaomei, et al. Preparation and properties of superhydrophilic polyvinylidene fluoride hollow fiber membrane[J]. Chemical Journal of Chinese Universities, 2020, 41(2): 358-364. | |
6 | MORIYA A, MARUYAMA T, OHMUKAI Y, et al. Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods[J]. Journal of Membrane Science, 2009, 342(1): 307-312. |
7 | 赵津礼, 王建友, 张玉忠. 新型聚醚砜-磺化聚醚砜共混膜的性能研究[J]. 水处理技术, 2019, 45(6): 38-42, 47. |
ZHAO Jinli, WANG Jianyou, ZHANG Yuzhong. Research on the properties of the novel polyethersulfone/sulfonated polyethersulfone blended membranes[J]. Technology of Water Treatment, 2019, 45(6): 38-42, 47. | |
8 | YANG Shujuan, ZOU Qinfeng, WANG Tianhao, et al. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane[J]. Journal of Membrane Science, 2019, 569: 48-59. |
9 | GONG Yuqiong, GAO Shoujian, TIAN Yangyang, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination[J]. Journal of Membrane Science, 2020, 600: 117874. |
10 | ZHAO Guobiao, HAO Yufan, HE Benqiao, et al. A chitosan-separation-layer nanofiltration membrane prepared through homogeneous hybrid and copper ion enhancement[J]. Separation and Purification Technology, 2020, 234: 116084. |
11 | HE Bing, DING Yajie, WANG Jianqiang, et al. Sustaining fouling resistant membranes: Membrane fabrication, characterization and mechanism understanding of demulsification and fouling-resistance[J]. Journal of Membrane Science, 2019, 581: 105-113. |
12 | ZHANG Guohui, WANG Panpan, ZHANG Xiaoxiao, et al. The preparation of PCL/MSO/SiO2 hierarchical superhydrophobic mats for oil-water separation by one-step method[J]. European Polymer Journal, 2019, 116: 386-393. |
13 | SHIBATA T. Cellulose acetate in separation technology[J]. Macromolecular Symposia, 2004, 208(1):353-370. |
14 | 梅洁, 陈家楠, 欧义芳. 醋酸纤维素的现状与发展趋势[J]. 纤维素科学与技术, 1999(4): 56-62. |
MEI Jie, CHEN Jianan, Yifang OU. The present and future trend of cellulose acetate[J]. Journal of Cellulose Science and Technology, 1999(4): 56-62. | |
15 | 陈家楠. 纤维素化学的现状与发展趋势[J]. 纤维素科学与技术, 1995(1): 1-10. |
CHEN Jianan. The present and future trend of cellulose chemistry[J]. Journal of Cellulose Science and Technology, 1995(1): 1-10. | |
16 | GALIANO F, BRICENO K, MARINO T, et al. Advances in biopolymer-based membrane preparation and applications[J]. Journal of Membrane Science, 2018, 564: 562-586. |
17 | SANAEEPUR H, AHMADI R, SINAEI M, et al. Pebax-modified cellulose acetate membrane for CO2/N2 separation[J]. Journal of Membrane Science and Research, 2019, 5(1): 25-32. |
18 | YANG Shujuan, WANG Tianhao, TANG Rong, et al. Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils[J]. International Journal of Biological Macromolecules, 2020, 151: 159-167. |
19 | ETEMADI H, MOTAMED M, YEGANI R. Comparative study between aeration rate and membrane modification effects on antifouling properties of cellulose acetate membrane in-membrane bioreactor systems[J]. Desalination and Water Treatment, 2019, 171: 67-77. |
20 | 杜予民. 甲壳素化学与应用的新进展[J]. 武汉大学学报(自然科学版), 2000, 146(2): 181-186. |
DU Yumin. Recent Developement of chemistry and application on chitin and chitosan[J]. Journal of Wuhan University(Natural Science Edition), 2000, 146(2): 181-186. | |
21 | RINAUDO M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006, 31(7): 603-632. |
22 | 秦振平, 孙冰洋, 郭春禹, 等. 壳聚糖多孔膜制备及其多功能分离性能研究[J]. 膜科学与技术, 2019, 39(1): 48-53. |
QIN Zhenping, SUN Bingyang, GUO Chunyu, et al. Research on fabrication of chitosan porous membrane and its multifunctional separation performance[J]. Membrane Science and Technology, 2019, 39(1): 48-53. | |
23 | THOMAS M S, PILLAI P K S, FARIA M, et al. Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(Ⅱ) from water[J]. Journal of Applied Polymer Science, 2020, 137: 48993. |
24 | DUSSELIER M, WOUWE P VAN, DEWAELE A, et al. Shape-selective zeolite catalysis for bioplastics production[J]. Science, 2015, 349(6243): 78-80. |
25 | TANAKA T, LLOYD D R. Formation of poly(L-lactic acid) microfiltration membranes via thermally induced phase separation[J]. Journal of Membrane Science, 2004, 238(1): 65-73. |
26 | SAWALHA H, SCHROEN K, BOOM R. Polylactide films formed by immersion precipitation: effects of additives, nonsolvent, and temperature[J]. Journal of Applied Polymer Science, 2007, 104(2): 959-971. |
27 | DE WITTE P VAN, ESSELBRUGGE H, DIJKSTRA P J, et al. A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water, and polylactide-N-methyl pyrrolidone-water[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(15): 2569-2578. |
28 | DE WITTE P VAN, ESSELBRUGGE H, DIJKSTRA P J, et al. Phase transitions during membrane formation of polylactides.1. A morphological study of membranes obtained from the system polylactide-chloroform-methanol[J]. Journal of Membrane Science, 1996, 113(2): 223-236. |
29 | TANAKA T, NISHIMOTO T, TSUKAMOTO K, et al. Formation of depth filter microfiltration membranes of poly(L-lactic acid) via phase separation[J]. Journal of Membrane Science, 2012, 396: 101-169. |
30 | 高爱林, 刘富, 薛立新. 生物基聚乳酸微孔膜的制备及透析性能[J]. 膜科学与技术, 2013, 33(4): 28-34. |
GAO Ailin, LIU Fu, XUE Lixin. Preparation and characterization of poly(L-lactic acid) microporous membrane for dialysis[J]. Membrane Science and Technology, 2013, 33(4): 28-34. | |
31 | CHITRATTHA S, PHAECHAMUD T. Modifying poly(L-lactic acid) matrix film properties with high loaded poly(ethylene glycol)[J]. Key Engineering Materials, 2013, 545: 57-62. |
32 | GAO Ailin, LIU Fu, SHI Huyan, et al. Controllable transition from finger-like pores to inter-connected pores of PLLA membranes[J]. Journal of Membrane Science, 2015, 478: 96-104. |
33 | MINBU H, OCHIAI A, KAWASE T, et al. Preparation of poly(L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants[J]. Journal of Membrane Science, 2015, 479: 85-94. |
34 | XIAO Chuanmin, XIAO Changfa, CHEN Mingxing, et al. Study on structure and properties of tubular braid-reinforced poly(lactic acid) (PLA) hollow fiber membranes[J]. Desalination and Water Treatment, 2019, 161: 116-125. |
35 | ZHANG Zhengmin, GAN Ziqi, BAO Ruiying, et al. Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning[J]. Journal of Membrane Science, 2020, 593: 117420. |
36 | LIU Lejing, YUAN Weizhong. A hierarchical functionalized biodegradable PLA electrospun nanofibrous membrane with superhydrophobicity and antibacterial properties for oil/water separation[J]. New Journal of Chemistry, 2018, 42(21): 17615-17624. |
37 | 姜郁. 基于聚乳酸和醋酸纤维素可降解超滤膜的制备及研究[D]. 吉林: 长春工业大学, 2019. |
JIANG Yu. Preparation and properties of degradable ultrafiltration membrane based on PLA and CA[D]. Jilin: Changchun University of Technology, 2019. | |
38 | LARRAÑAGA A, LIZUNDIA E. A review on the thermomechanical properties and biodegradation behaviour of polyesters[J]. European Polymer Journal, 2019, 121: 109296. |
39 | FULLER K P, GASPAR D, DELGADO L M, et al. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ε-caprolactone electro-spun fibrous scaffolds[J]. Nanomedicine, 2016, 11(9): 1031-1040. |
40 | PALACIOS H H, URENA-SABORIO H, ZURITA F, et al. Nanocellulose and polycaprolactone nanospun composite membranes and their potential for the removal of pollutants from water[J]. Molecules, 2020, 25(3): 683-696. |
41 | ÁNGEL-SANCHEZ K DEL, BORBOLLA-TORRES C I, PALACIOS-PINEDA L M, et al. Development, fabrication, and characterization of composite polycaprolactone membranes reinforced with TiO2 nanoparticles[J]. Polymers, 2019, 11(12): 1955-1979. |
42 | ZHANG Xiaoxiao, ZHAO Jie, MA Liang, et al. Biomimetic preparation of a polycaprolactone membrane with a hierarchical structure as a highly efficient oil-water separator[J]. Journal of Materials Chemistry A, 2019, 7(42): 24532-24542. |
43 | SONG J H, MURPHY R J, NARAYAN R, et al. Biodegradable and compostable alternatives to conventional plastics[J]. Philosophical Transactions of Biological Sciences, 2009, 364(1526): 2127-2139. |
44 | 杜江华, 杨青芳, 范晓东, 等. 多级结构PHB基电纺纤维膜的制备及性能研究[J]. 合成纤维工业, 2016, 39(3): 26-29. |
DU Jianghua, YANG Qingfang, FAN Xiaodong, et al. Preparation and properties of electrospun PHB fiber mats with multilevel structure[J]. China Synthetic Fiber Industry, 2016, 39(3): 26-29. | |
45 | 张波波. 聚羟基丁酸酯/纳米纤维素复合薄膜的制备与性能研究[D]. 南宁: 广西大学, 2019. |
ZHANG Bobo. Preparation and properties of nanocellulose/polyhydroxybutyrate composite films[D]. Nanning: Guangxi University, 2019. | |
46 | LIN Xinghuan, LI Shanshan, JUNG Joonhoo, et al. PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications[J]. RSC Advances, 2019, 9(40): 23071-23080. |
47 | MOK C F, CHING Y C, MUHAMAD F, et al. Adsorption of dyes using poly(vinyl alcohol) (PVA) and PVA-based polymer composite adsorbents: a review[J]. Journal of Polymers and the Environment, 2020, 28(3): 775-793. |
48 | NASCIMENTO F C DO, DE AGUIAR L C V, COSTA L A T, et al. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: effects of the crosslinking agents[J]. Polymer Bulletin, 2021, 78: 917-929. |
49 | DUDEK G, TURCZYN R, KONIECZNY K. Robust poly(vinyl alcohol) membranes containing chitosan/chitosan derivatives microparticles for pervaporative dehydration of ethanol[J]. Separation and Purification Technology, 2020, 234: 116094. |
50 | PORNEA A M, PUGUAN J M C, DEONIKAR V G, et al. Robust Janus nanocomposite membrane with opposing surface wettability for selective oil-water separation[J]. Separation and Purification Technology, 2020, 236: 116297. |
51 | DAVE H K, NATH K. Sorption and diffusion phenomena in pervaporative dehydration of acetic acid through a PVA-PES composite membrane[J]. Journal of Scientific and Industrial Research, 2018, 77(2): 98-103. |
52 | LI Xipeng, SHAN Huiting, ZHANG Wei, et al. 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation[J]. Separation and Purification Technology, 2020, 237:116324. |
53 | BIMALI KOONGOLLA J, ANDRADY A L, TERNEY PRADEEP KUMARA P B, et al. Evidence of microplastics pollution in coastal beaches and waters in southern Sri Lanka[J]. Marine Pollution Bulletin, 2018, 137: 277-284. |
54 | SCAFFARO R, MAIO A, SUTERA F, et al. Degradation and recycling of films based on biodegradable polymers: a short review[J]. Polymers, 2019, 11(4): 651-671. |
55 | BRANNIGAN R P, DOVE A P. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates[J]. Biomaterials Science, 2017, 5(1): 9-21. |
56 | HAKKARAINEN M. Aliphatic polyesters: a biotic and biotic degradation and degradation products[J]. Degradable Aliphatic Polyesters, 2002, 157: 113-138. |
57 | HAN Xiaoxiao, PAN Jingzhe. A model for simultaneous crystallisation and biodegradation of biodegradable polymers[J]. Biomaterials, 2009, 30: 423-430. |
58 | 陈海燕, 吴丰昌, 魏源, 等. 生物基聚合物PHBV和PLA复合材料在不同介质中的生物降解及其影响因素[J]. 中国环境科学, 2018, 38(7): 2706-2713. |
CHEN Haiyan, WU Fengchang, WEI Yuan, et al. Biodegradation of biologically based polymer PHBV and PLA composites in different media and its influencing factors[J]. China Environmental Science, 2018, 38(7): 2706-2713. | |
59 | ZOU Fangdong, SUN Xiaoxia, WANG Xinhou. Elastic, hydrophilic and biodegradable poly(1,8-octanediol-co-citricacid)/polylactic acid nanofifibrous membranes for potential wound dressing applications[J]. Polymer Degradation and Stability, 2019, 166: 163-173. |
60 | HAIDER T P, VOLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie: International Edition, 2019, 58(1): 50-62. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[7] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[8] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[9] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[10] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[11] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[12] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[13] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[14] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[15] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |