Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6663-6669.DOI: 10.16085/j.issn.1000-6613.2021-0060
• Energy processes and technology • Previous Articles Next Articles
CAO Xuewen(), YANG Jian, BIAN Jiang(), LIU Yang, GUO Dan, LI Qigui
Received:
2021-01-11
Revised:
2021-03-15
Online:
2021-12-21
Published:
2021-12-05
Contact:
BIAN Jiang
通讯作者:
边江
作者简介:
曹学文(1966—),男,博士,教授,主要从事油气储运工程方面的研究和教学工作。E-mail:基金资助:
CLC Number:
CAO Xuewen, YANG Jian, BIAN Jiang, LIU Yang, GUO Dan, LI Qigui. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669.
曹学文, 杨健, 边江, 刘杨, 郭丹, 李琦瑰. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0060
设备 | ?方程 |
---|---|
压缩机 | |
冷却器 | |
多流 换热器 | |
膨胀机 | |
LNG泵 | |
转化器 |
设备 | ?方程 |
---|---|
压缩机 | |
冷却器 | |
多流 换热器 | |
膨胀机 | |
LNG泵 | |
转化器 |
物流 | 温度/℃ | 压力/kPa | 质量流量/kg·h-1 | 质量?/kJ·kg-1 |
---|---|---|---|---|
Feed | 25 | 140 | 208.3 | 397.7 |
GH1 | 8.8 | 140 | 1535.3 | 404.5 |
GH2 | 119.1 | 388.9 | 1535.3 | 1835.1 |
GH3 | 25 | 388.9 | 1535.3 | 1654.8 |
GH4 | 142.1 | 1080.1 | 1535.3 | 3181.5 |
GH5 | 25 | 1080.1 | 1535.3 | 2913.4 |
GH6 | 142.3 | 3000 | 1535.3 | 4446.1 |
GH7 | 25 | 3000 | 1535.3 | 4176.6 |
GH8 | -91 | 3000 | 1535.3 | 4647.2 |
GH9 | -155.5 | 3000 | 1535.3 | 5688.1 |
GH10 | -189 | 3000 | 1535.3 | 6792.2 |
GH11 | -195.7 | 2125 | 1535.3 | 6641.8 |
GH12 | -214.5 | 2125 | 1535.3 | 7774.6 |
GH13 | -219.4 | 1500 | 1535.3 | 7660.4 |
GH14 | -238.3 | 1500 | 1535.3 | 10345.1 |
GH15 | -252 | 140 | 1535.3 | 9963.2 |
LH | -251.8 | 140 | 208.3 | 14627 |
BH1 | -251.8 | 140 | 1327 | 8742.2 |
BH2 | -221.5 | 140 | 1327 | 4776.6 |
BH3 | -197.9 | 140 | 1327 | 3337.1 |
BH4 | -157.5 | 140 | 1327 | 1939.7 |
BH5 | -94.4 | 140 | 1327 | 899.7 |
BH6 | 6.3 | 140 | 1327 | 406.8 |
LNG1 | -160 | 120 | 1120 | 957.9 |
LNG2 | -158.5 | 3000 | 1120 | 959 |
LNG3 | -94.4 | 3000 | 1120 | 720.3 |
NG | 23 | 3000 | 1120 | 460.1 |
物流 | 温度/℃ | 压力/kPa | 质量流量/kg·h-1 | 质量?/kJ·kg-1 |
---|---|---|---|---|
Feed | 25 | 140 | 208.3 | 397.7 |
GH1 | 8.8 | 140 | 1535.3 | 404.5 |
GH2 | 119.1 | 388.9 | 1535.3 | 1835.1 |
GH3 | 25 | 388.9 | 1535.3 | 1654.8 |
GH4 | 142.1 | 1080.1 | 1535.3 | 3181.5 |
GH5 | 25 | 1080.1 | 1535.3 | 2913.4 |
GH6 | 142.3 | 3000 | 1535.3 | 4446.1 |
GH7 | 25 | 3000 | 1535.3 | 4176.6 |
GH8 | -91 | 3000 | 1535.3 | 4647.2 |
GH9 | -155.5 | 3000 | 1535.3 | 5688.1 |
GH10 | -189 | 3000 | 1535.3 | 6792.2 |
GH11 | -195.7 | 2125 | 1535.3 | 6641.8 |
GH12 | -214.5 | 2125 | 1535.3 | 7774.6 |
GH13 | -219.4 | 1500 | 1535.3 | 7660.4 |
GH14 | -238.3 | 1500 | 1535.3 | 10345.1 |
GH15 | -252 | 140 | 1535.3 | 9963.2 |
LH | -251.8 | 140 | 208.3 | 14627 |
BH1 | -251.8 | 140 | 1327 | 8742.2 |
BH2 | -221.5 | 140 | 1327 | 4776.6 |
BH3 | -197.9 | 140 | 1327 | 3337.1 |
BH4 | -157.5 | 140 | 1327 | 1939.7 |
BH5 | -94.4 | 140 | 1327 | 899.7 |
BH6 | 6.3 | 140 | 1327 | 406.8 |
LNG1 | -160 | 120 | 1120 | 957.9 |
LNG2 | -158.5 | 3000 | 1120 | 959 |
LNG3 | -94.4 | 3000 | 1120 | 720.3 |
NG | 23 | 3000 | 1120 | 460.1 |
物流 | 正氢比例/% | 仲氢比例/% |
---|---|---|
Feed | 75 | 25 |
GH1 | 12.21 | 88.97 |
BH1 | 1.19 | 98.81 |
LH | 0.90 | 99.10 |
物流 | 正氢比例/% | 仲氢比例/% |
---|---|---|
Feed | 75 | 25 |
GH1 | 12.21 | 88.97 |
BH1 | 1.19 | 98.81 |
LH | 0.90 | 99.10 |
参数 | 值 |
---|---|
压缩机功耗/kW | 2156.65 |
LNG泵功耗/kW | 2.62 |
膨胀机回收功/kW | 117.06 |
SEC/ | 9.802 |
EXE/% | 41.4 |
参数 | 值 |
---|---|
压缩机功耗/kW | 2156.65 |
LNG泵功耗/kW | 2.62 |
膨胀机回收功/kW | 117.06 |
SEC/ | 9.802 |
EXE/% | 41.4 |
多流热交换器 | 最小温差/℃ | U/kW·℃-1 |
---|---|---|
HX1 | 2 | 57.35 |
HX2 | 2.012 | 191.13 |
HX3 | 2.042 | 51.66 |
HX4 | 2.203 | 34.80 |
HX5 | 2.078 | 36.54 |
多流热交换器 | 最小温差/℃ | U/kW·℃-1 |
---|---|---|
HX1 | 2 | 57.35 |
HX2 | 2.012 | 191.13 |
HX3 | 2.042 | 51.66 |
HX4 | 2.203 | 34.80 |
HX5 | 2.078 | 36.54 |
设备 | ?损失/kW | ?破坏率/% |
---|---|---|
Com-1 | 80.47 | 5.9 |
Com-2 | 80.51 | 5.9 |
Com-3 | 80.81 | 5.9 |
C-1 | 76.90 | 0.2 |
C-2 | 114.34 | 1.8 |
C-3 | 114.93 | 1.7 |
P-1 | 2.28 | 8 |
E-1 | 25.30 | 4.5 |
E-2 | 23.59 | 1 |
E-3 | 109.78 | 3.2 |
HX1 | 61.94 | 3.5 |
HX2 | 13.7 | 23.1 |
HX3 | 44.23 | 5.6 |
HX4 | 47.51 | 8.3 |
HX5 | 316.81 | 8.4 |
Co-1 | 180.22 | 13.1 |
总计 | 1373.3 | 100 |
设备 | ?损失/kW | ?破坏率/% |
---|---|---|
Com-1 | 80.47 | 5.9 |
Com-2 | 80.51 | 5.9 |
Com-3 | 80.81 | 5.9 |
C-1 | 76.90 | 0.2 |
C-2 | 114.34 | 1.8 |
C-3 | 114.93 | 1.7 |
P-1 | 2.28 | 8 |
E-1 | 25.30 | 4.5 |
E-2 | 23.59 | 1 |
E-3 | 109.78 | 3.2 |
HX1 | 61.94 | 3.5 |
HX2 | 13.7 | 23.1 |
HX3 | 44.23 | 5.6 |
HX4 | 47.51 | 8.3 |
HX5 | 316.81 | 8.4 |
Co-1 | 180.22 | 13.1 |
总计 | 1373.3 | 100 |
氢液化系统 | 比能耗/ | ?效率/% |
---|---|---|
理想预冷Linde-Hampson[ | 16.27 | 27 |
LNG预冷L-H系统 | 14.30 | 28.53 |
Ingolstadt氢气液化流程[ | 13.58 | 21 |
氦制冷液化流程[ | 10.25 | 37.98 |
氮气预冷单压Claude系统[ | 10 | 32.6 |
新型双压L-H系统 | 9.802 | 41.4 |
氮气预冷双压Claude系统[ | 8.68 | 37.7 |
Quack氢气液化系统[ | 6.93 | 52.6 |
WE-NET氢气液化系统[ | 8.53 | 41.3 |
氢液化系统 | 比能耗/ | ?效率/% |
---|---|---|
理想预冷Linde-Hampson[ | 16.27 | 27 |
LNG预冷L-H系统 | 14.30 | 28.53 |
Ingolstadt氢气液化流程[ | 13.58 | 21 |
氦制冷液化流程[ | 10.25 | 37.98 |
氮气预冷单压Claude系统[ | 10 | 32.6 |
新型双压L-H系统 | 9.802 | 41.4 |
氮气预冷双压Claude系统[ | 8.68 | 37.7 |
Quack氢气液化系统[ | 6.93 | 52.6 |
WE-NET氢气液化系统[ | 8.53 | 41.3 |
1 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
2 | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | |
3 | 孟翔宇, 顾阿伦, 邬新国, 等. 2019年中国氢能政策、产业与科技发展热点回眸[J]. 科技导报, 2020, 38(3): 172-183. |
MENG Xiangyu, GU Alun, WU Xinguo, et al. Review of China’s hydrogen industry policy and scientific and technological development hotspots in 2019[J]. Science & Technology Review, 2020, 38(3): 172-183. | |
4 | BERSTAD D O, STANG J H, NEKSÅ P. Comparison criteria for large-scale hydrogen liquefaction processes[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1560-1568. |
5 | 朱琴君, 祝俊宗. 国内液氢加氢站的发展与前景[J]. 煤气与热力, 2020, 40(7): 15-19, 45. |
ZHU Qinjun, ZHU Junzong. Development and prospect of liquid hydrogen refueling stations in China[J]. Gas & Heat, 2020, 40(7): 15-19, 45. | |
6 | HAMMAD A, DINCER I. Analysis and assessment of an advanced hydrogen liquefaction system[J]. International Journal of Hydrogen Energy, 2018, 43(2): 1139-1151. |
7 | 吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18. |
Cui LYU, WANG Jinzhen, ZHU Weiping, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18. | |
8 | CHANG H M, RYU K N, BAIK J H. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator[J]. Cryogenics, 2018, 91: 68-76. |
9 | YUKSEL Y E, OZTURK M, DINCER I. Analysis and assessment of a novel hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11429-11438. |
10 | TARIQUE A, DINCER I, ZAMFIRESCU C. Application of scroll expander in cryogenic process of hydrogen liquefaction[M]//Progress in Exergy, Energy, and the Environment. Berlin: Springer International Publishing, 2014. |
11 | KANOGLU M, YILMAZ C, ABUSOGLU A. Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11185-11200. |
12 | KRASAE-IN S, STANG J H, NEKSA P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
13 | CHANG H M, KIM B H, CHOI B. Hydrogen liquefaction process with Brayton refrigeration cycle to utilize the cold energy of LNG[J]. Cryogenics, 2020, 108: 103093. |
14 | 曹增辉. 液化天然气冷能利用方法的研究与展望[J]. 化工管理, 2020(16): 56-57. |
CAO Zenghui. Method research and prospect of LNG cold energy utilization[J]. Chemical Enterprise Management, 2020(16): 56-57. | |
15 | QYYUM M A, QADEER K, MINH L Q, et al. Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus[J]. Applied Energy, 2019, 235: 247-257. |
16 | 殷靓, 巨永林. 氢液化流程设计和优化方法研究进展[J]. 制冷学报, 2020, 41(3): 1-10. |
YIN Liang, JU Yonglin. Review on researches and developments of the design and optimization for hydrogen liquefaction processes[J]. Journal of Refrigeration, 2020, 41(3): 1-10. | |
17 | ASADNIA M, MEHRPOOYA M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585. |
18 | ASLAMBAKHSH A H, MOOSAVIAN M A, AMIDPOUR M, et al. Global cost optimization of a mini-scale liquefied natural gas plant[J]. Energy, 2018, 148: 1191-1200. |
19 | MARMOLEJO-CORREA D, GUNDERSEN T. A comparison of exergy efficiency definitions with focus on low temperature processes[J]. Energy, 2012, 44(1): 477-489. |
20 | QYYUM M A, ALI W, LONG N V D, et al. Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine[J]. Energy, 2018, 144: 968-976. |
21 | KOCHUNNI S K, CHOWDHURY K. Zero methane loss in reliquefaction of boil-off gas in liquefied natural gas carrier ships by using packed bed distillation in reverse Brayton system[J]. Journal of Cleaner Production, 2020, 260: 121037. |
22 | AASADNIA M, MEHRPOOYA M. Large-scale liquid hydrogen production methods and approaches: a review[J]. Applied Energy, 2018, 212: 57-83. |
23 | BRACHA M, LORENZ G, PATZELT A, et al. Large-scale hydrogen liquefaction in Germany[J]. International Journal of Hydrogen Energy, 1994, 19(1): 53-59. |
24 | 殷靓, 巨永林, 王刚. 1,000 L/h氢液化装置工艺流程分析及优化[J]. 制冷技术, 2019, 39(1): 39-44. |
YIN Liang, JU Yonglin, WANG Gang. Process analysis and optimization of 1000L/h hydrogen liquefaction system[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 39-44. |
[1] | SUN Chongzheng, FAN Xin, LI Yuxing, XU Jie, HAN Hui, LIU Liang. Coupling characteristics of hydrogen heat transfer and normal-parahydrogen conversion in offshore porous media channels [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1281-1290. |
[2] | LUO Zhenmin, LIU Lu, SU Bin, SONG Fangzhi. Effect of inert gas on ethylene explosion limit parameters and kinetic characteristics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4653-4661. |
[3] | JIANG Hua, ZHANG Zihui, GONG Wuqi, CHANG Yueyong. Design and performance analysis of mechanical vapor recompression salt fractionation evaporation crystallization system [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3947-3956. |
[4] | WANG Jianxun. Comprehensive analysis of cascade heating technology based on waste heat of thermal power units [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 149-155. |
[5] | ZHENG Zhihang, LI Qian, ZHANG Jiayuan, ZHOU Haoyu. Simulation of industrial Shell entrained flow bed by Aspen Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2152-2160. |
[6] | LIU Zuoren, XU Chuanlong, TANG Guanghua. Simulation and sensitivity analysis of flue gas environmental protection island system in coal-fired unit based on ASPEN Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6564-6573. |
[7] | LIU Guanglin, XU Jinliang, MIAO Zheng. Exergy analysis of two stage organic Rankine cycle generation power system with co-condenser [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6656-6662. |
[8] | XU Wanyi, WANG Hongxia, CUI Xiaomi, ZHANG Zaoxiao. Research progress on cleaner production and engineering of calcium carbide preparation [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5337-5347. |
[9] | Hengyu YIN,Junjie FAN,Jiaxiao DENG,Meifang DU,Shixuan CHEN. Analysis and optimization of waste heat recovery system in coke oven [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1181-1186. |
[10] | LIU Zhonghui, YU Kuangshi, ZHANG Haixia, ZHU Zhiping. Simulation of industrial circulating fluidized bed gasifier by Aspen Plus [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1709-1717. |
[11] | YU Dian, ZHONG Zhaoping, LI Quanxin. Process simulation and exergy analysis of jet fuel production by the coupling of Fischer-Tropsch synthesis and olefin polymerization from bio-oil cracking gas [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1767-1773. |
[12] | LI Zhonghua, XIAO Wu, HE Gaohong, DU Yanze, FANG Xiangchen, LUO Li. Optimization and reformation of heat exchanger network for wax oil hydrocracking unit by pinch technology and exergy analysis [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1231-1239. |
[13] | DONG Fenglian, WANG Hua, LIU Hualin, WANG Zhe, JU Shengtao. New generation of planning optimization system oriented to collaborative application [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 1986-1993. |
[14] | GAO Ning, GAO Qiuju, SUN Wei, ZHANG Xinyu. Sensitivity analysis of total construction cost of supply chain in international petrochemical engineering project [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 965-969. |
[15] | WANG Jiyan,TENG Hu,XIU Zhilong. Cost analysis on three separation processes in microbial production of 1,3-propanediol [J]. Chemical Industry and Engineering Progree, 2012, 31(01 ): 35-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |