Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S1): 270-280.DOI: 10.16085/j.issn.1000-6613.2019-1595
• Resources and environmental engineering • Previous Articles Next Articles
Gongchu SHI(), Yalong LIAO(), Bowen SU, Yu ZHANG, Jiajun XI
Received:
2019-10-09
Online:
2020-06-29
Published:
2020-05-20
Contact:
Yalong LIAO
通讯作者:
廖亚龙
作者简介:
史公初(1994—),男,硕士研究生,研究方向为资源二次回收利用。E-mail:基金资助:
CLC Number:
Gongchu SHI, Yalong LIAO, Bowen SU, Yu ZHANG, Jiajun XI. Multi-objective optimization of pressure oxidative selective leaching of copper smelting slag by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 270-280.
史公初, 廖亚龙, 苏博文, 张宇, 郗家俊. 响应曲面法多目标优化铜冶炼渣氧压选择性浸出工艺[J]. 化工进展, 2020, 39(S1): 270-280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1595
成分 | TFe | MgO | CaO | SiO2 | Αl2O3 | Cu | Zn | S |
---|---|---|---|---|---|---|---|---|
质量分数/% | 41.36 | 2.51 | 2.54 | 30.50 | 4.24 | 0.64 | 1.94 | 0.98 |
成分 | TFe | MgO | CaO | SiO2 | Αl2O3 | Cu | Zn | S |
---|---|---|---|---|---|---|---|---|
质量分数/% | 41.36 | 2.51 | 2.54 | 30.50 | 4.24 | 0.64 | 1.94 | 0.98 |
区域 | 参数 | O | Mg | Αl | Si | S | Ca | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 质量分数 原子分数 | 19.13 38.34 | 1.32 1.74 | 1.54 1.83 | 10.65 12.16 | 10.03 10.03 | 1.26 1.01 | 33.95 19.49 | 17.98 9.07 | 1.74 0.85 |
2 | 质量分数 原子分数 | 28.72 50.18 | 1.74 2.01 | 1.57 2.22 | 16.47 16.39 | 0.75 0.65 | 1.79 1.25 | 43.45 21.75 | — — | 2.27 0.97 |
3 | 质量分数 原子分数 | 27.76 49.80 | 2.06 2.44 | 2.30 2.44 | 16.02 16.37 | 1.14 1.02 | 1.73 12.4 | 42.93 22.06 | — — | 2.11 0.93 |
区域 | 参数 | O | Mg | Αl | Si | S | Ca | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 质量分数 原子分数 | 19.13 38.34 | 1.32 1.74 | 1.54 1.83 | 10.65 12.16 | 10.03 10.03 | 1.26 1.01 | 33.95 19.49 | 17.98 9.07 | 1.74 0.85 |
2 | 质量分数 原子分数 | 28.72 50.18 | 1.74 2.01 | 1.57 2.22 | 16.47 16.39 | 0.75 0.65 | 1.79 1.25 | 43.45 21.75 | — — | 2.27 0.97 |
3 | 质量分数 原子分数 | 27.76 49.80 | 2.06 2.44 | 2.30 2.44 | 16.02 16.37 | 1.14 1.02 | 1.73 12.4 | 42.93 22.06 | — — | 2.11 0.93 |
因素 | 编码 | 单位 | 水平 | 梯步值 | ||||
---|---|---|---|---|---|---|---|---|
-1.682(-α) | -1 | 0 | +1 | +1.682(+α) | ||||
温度 | x1 | °C | 183 | 190 | 200 | 210 | 217 | 15 |
硫酸浓度 | x2 | mol·L-1 | 0.23 | 0.3 | 0.4 | 0.5 | 0.57 | 0.1 |
液固比 | x3 | mL·g-1 | 4.3 | 5 | 6 | 7 | 7.7 | 1 |
因素 | 编码 | 单位 | 水平 | 梯步值 | ||||
---|---|---|---|---|---|---|---|---|
-1.682(-α) | -1 | 0 | +1 | +1.682(+α) | ||||
温度 | x1 | °C | 183 | 190 | 200 | 210 | 217 | 15 |
硫酸浓度 | x2 | mol·L-1 | 0.23 | 0.3 | 0.4 | 0.5 | 0.57 | 0.1 |
液固比 | x3 | mL·g-1 | 4.3 | 5 | 6 | 7 | 7.7 | 1 |
编号 | 编码 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2·h-1 | ||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | Cu | Fe | Si | |||
1 | 0 | α | 0 | 97.49 | 1.97 | 1.41 | 94.11 | 374.64 |
2 | -1 | 1 | 1 | 96.86 | 1.59 | 1.05 | 94.22 | 356.59 |
3 | 0 | 0 | 0 | 97.39 | 1.23 | 1.32 | 94.84 | 391.20 |
4 | 0 | 0 | 0 | 97.63 | 1.07 | 1.72 | 94.84 | 388.85 |
5 | 1 | 1 | 1 | 98.32 | 1.68 | 0.81 | 95.83 | 403.25 |
6 | 0 | 0 | 0 | 97.63 | 1.03 | 1.80 | 94.80 | 395.14 |
7 | 0 | 0 | 0 | 97.63 | 1.13 | 1.73 | 94.77 | 392.11 |
8 | -α | 0 | 0 | 95.09 | 0.87 | 1.23 | 92.99 | 316.27 |
9 | α | 0 | 0 | 98.12 | 0.92 | 1.63 | 95.57 | 370.03 |
10 | 1 | -1 | 1 | 95.81 | 0.53 | 1.52 | 93.76 | 349.44 |
11 | 0 | 0 | -α | 93.28 | 1.09 | 2.46 | 89.73 | 268.61 |
12 | -1 | 1 | -1 | 96.79 | 2.31 | 2.45 | 92.03 | 296.88 |
13 | 0 | 0 | 0 | 96.92 | 1.03 | 1.02 | 94.87 | 394.61 |
14 | -1 | -1 | 1 | 94.15 | 1.28 | 2.87 | 90.00 | 316.13 |
15 | 1 | -1 | -1 | 90.80 | 2.71 | 1.13 | 86.96 | 302.45 |
16 | -1 | -1 | -1 | 88.17 | 1.19 | 1.76 | 85.22 | 297.84 |
17 | 0 | 0 | 0 | 98.08 | 1.13 | 2.12 | 94.83 | 393.65 |
18 | 1 | 1 | -1 | 94.94 | 1.22 | 1.51 | 92.21 | 320.40 |
19 | 0 | 0 | α | 97.54 | 1.26 | 1.33 | 94.95 | 379.97 |
20 | 0 | -α | 0 | 86.99 | 0.42 | 2.04 | 84.53 | 335.28 |
编号 | 编码 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2·h-1 | ||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | Cu | Fe | Si | |||
1 | 0 | α | 0 | 97.49 | 1.97 | 1.41 | 94.11 | 374.64 |
2 | -1 | 1 | 1 | 96.86 | 1.59 | 1.05 | 94.22 | 356.59 |
3 | 0 | 0 | 0 | 97.39 | 1.23 | 1.32 | 94.84 | 391.20 |
4 | 0 | 0 | 0 | 97.63 | 1.07 | 1.72 | 94.84 | 388.85 |
5 | 1 | 1 | 1 | 98.32 | 1.68 | 0.81 | 95.83 | 403.25 |
6 | 0 | 0 | 0 | 97.63 | 1.03 | 1.80 | 94.80 | 395.14 |
7 | 0 | 0 | 0 | 97.63 | 1.13 | 1.73 | 94.77 | 392.11 |
8 | -α | 0 | 0 | 95.09 | 0.87 | 1.23 | 92.99 | 316.27 |
9 | α | 0 | 0 | 98.12 | 0.92 | 1.63 | 95.57 | 370.03 |
10 | 1 | -1 | 1 | 95.81 | 0.53 | 1.52 | 93.76 | 349.44 |
11 | 0 | 0 | -α | 93.28 | 1.09 | 2.46 | 89.73 | 268.61 |
12 | -1 | 1 | -1 | 96.79 | 2.31 | 2.45 | 92.03 | 296.88 |
13 | 0 | 0 | 0 | 96.92 | 1.03 | 1.02 | 94.87 | 394.61 |
14 | -1 | -1 | 1 | 94.15 | 1.28 | 2.87 | 90.00 | 316.13 |
15 | 1 | -1 | -1 | 90.80 | 2.71 | 1.13 | 86.96 | 302.45 |
16 | -1 | -1 | -1 | 88.17 | 1.19 | 1.76 | 85.22 | 297.84 |
17 | 0 | 0 | 0 | 98.08 | 1.13 | 2.12 | 94.83 | 393.65 |
18 | 1 | 1 | -1 | 94.94 | 1.22 | 1.51 | 92.21 | 320.40 |
19 | 0 | 0 | α | 97.54 | 1.26 | 1.33 | 94.95 | 379.97 |
20 | 0 | -α | 0 | 86.99 | 0.42 | 2.04 | 84.53 | 335.28 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 224.22 | 9 | 24.91 | 75.26 | < 0.0001 | 显著 |
x1 | 9.90 | 1 | 9.90 | 29.91 | 0.0003 | |
x2 | 86.96 | 1 | 86.96 | 262.71 | < 0.0001 | |
x3 | 50.14 | 1 | 50.14 | 151.49 | < 0.0001 | |
x1x2 | 1.72 | 1 | 1.72 | 5.20 | 0.0458 | |
x1x3 | 1.49 | 1 | 1.49 | 4.49 | 0.0600 | |
x2x3 | 4.16 | 1 | 4.16 | 12.57 | 0.0053 | |
x12 | 1.31 | 1 | 1.31 | 3.97 | 0.0743 | |
x22 | 60.89 | 1 | 60.89 | 183.96 | < 0.0001 | |
x32 | 14.06 | 1 | 14.06 | 42.49 | < 0.0001 | |
残差 | 3.31 | 10 | 0.33 | |||
失拟项 | 3.31 | 5 | 0.66 | |||
纯误差 | 0.72 | 5 | 0.14 | |||
总合 | 227.53 | 19 | ||||
R2 | 0.9855 | |||||
Adj R2 | 0.9724 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 224.22 | 9 | 24.91 | 75.26 | < 0.0001 | 显著 |
x1 | 9.90 | 1 | 9.90 | 29.91 | 0.0003 | |
x2 | 86.96 | 1 | 86.96 | 262.71 | < 0.0001 | |
x3 | 50.14 | 1 | 50.14 | 151.49 | < 0.0001 | |
x1x2 | 1.72 | 1 | 1.72 | 5.20 | 0.0458 | |
x1x3 | 1.49 | 1 | 1.49 | 4.49 | 0.0600 | |
x2x3 | 4.16 | 1 | 4.16 | 12.57 | 0.0053 | |
x12 | 1.31 | 1 | 1.31 | 3.97 | 0.0743 | |
x22 | 60.89 | 1 | 60.89 | 183.96 | < 0.0001 | |
x32 | 14.06 | 1 | 14.06 | 42.49 | < 0.0001 | |
残差 | 3.31 | 10 | 0.33 | |||
失拟项 | 3.31 | 5 | 0.66 | |||
纯误差 | 0.72 | 5 | 0.14 | |||
总合 | 227.53 | 19 | ||||
R2 | 0.9855 | |||||
Adj R2 | 0.9724 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 33004.45 | 9 | 3667.16 | 90.34 | < 0.0001 | 显著 |
x1 | 2885.546 | 1 | 2885.55 | 71.08 | < 0.0001 | |
x2 | 2305.832 | 1 | 2305.83 | 56.80 | < 0.0001 | |
x3 | 11431.87 | 1 | 11431.87 | 281.62 | < 0.0001 | |
x1x2 | 130.0885 | 1 | 130.09 | 3.20 | 0.1037 | |
x1x3 | 335.9232 | 1 | 335.92 | 8.28 | 0.0165 | |
x2x3 | 746.5248 | 1 | 746.52 | 18.39 | 0.0016 | |
x12 | 5212.512 | 1 | 5212.51 | 128.41 | < 0.0001 | |
x22 | 3174.955 | 1 | 3174.96 | 78.21 | < 0.0001 | |
x32 | 9508.394 | 1 | 9508.39 | 234.23 | < 0.0001 | |
残差 | 405.9362 | 10 | 40.59 | |||
失拟项 | 378.0797 | 5 | 75.62 | |||
纯误差 | 27.85653 | 5 | 5.57 | |||
总合 | 33410.39 | 19 | ||||
R2 | 0.9879 | |||||
Adj R2 | 0.9769 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 33004.45 | 9 | 3667.16 | 90.34 | < 0.0001 | 显著 |
x1 | 2885.546 | 1 | 2885.55 | 71.08 | < 0.0001 | |
x2 | 2305.832 | 1 | 2305.83 | 56.80 | < 0.0001 | |
x3 | 11431.87 | 1 | 11431.87 | 281.62 | < 0.0001 | |
x1x2 | 130.0885 | 1 | 130.09 | 3.20 | 0.1037 | |
x1x3 | 335.9232 | 1 | 335.92 | 8.28 | 0.0165 | |
x2x3 | 746.5248 | 1 | 746.52 | 18.39 | 0.0016 | |
x12 | 5212.512 | 1 | 5212.51 | 128.41 | < 0.0001 | |
x22 | 3174.955 | 1 | 3174.96 | 78.21 | < 0.0001 | |
x32 | 9508.394 | 1 | 9508.39 | 234.23 | < 0.0001 | |
残差 | 405.9362 | 10 | 40.59 | |||
失拟项 | 378.0797 | 5 | 75.62 | |||
纯误差 | 27.85653 | 5 | 5.57 | |||
总合 | 33410.39 | 19 | ||||
R2 | 0.9879 | |||||
Adj R2 | 0.9769 |
实验 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2?h-1 | ||
---|---|---|---|---|---|
Cu | Fe | Si | |||
1 | 97.94 | 0.34 | 0.81 | 96.79 | 398.17 |
2 | 98.32 | 0.42 | 1.51 | 96.39 | 394.49 |
3 | 98.18 | 0.41 | 1.24 | 96.53 | 401.38 |
平均值 | 98.08 | 0.39 | 1.12 | 96.57 | 398.01 |
实验 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2?h-1 | ||
---|---|---|---|---|---|
Cu | Fe | Si | |||
1 | 97.94 | 0.34 | 0.81 | 96.79 | 398.17 |
2 | 98.32 | 0.42 | 1.51 | 96.39 | 394.49 |
3 | 98.18 | 0.41 | 1.24 | 96.53 | 401.38 |
平均值 | 98.08 | 0.39 | 1.12 | 96.57 | 398.01 |
1 | 朱祖泽. 现代铜冶金学[M]. 北京: 科学出版社, 2003: 2-8. |
ZHU Zuze. Modern copper metallurgy[M]. Beijing: Science Press, 2003: 2-8. | |
2 | 赵凯, 宫晓然, 李杰, 等. 急冷铜渣矿物学及其综合利用[J]. 中国矿业, 2015(9): 102-106. |
ZHAO Kai, GONG Xiaoran, LI Jie, et al. Mineralogical characteristics and comprehensive utilization of rapid cooling copper slag[J]. China Mining Magazine, 2015(9): 102-106. | |
3 | ALTER H. The composition and environmental hazard of copper slags in the context of the Basel convention[J]. Resources Conservation and Recycling, 2005, 43(4): 353-360. |
4 | 廖亚龙, 叶朝, 王祎洋, 等. 铜冶炼渣资源化利用研究进展[J]. 化工进展, 2017, 36(8): 3066-3073. |
LIAO Yalong, YE Chao, WANG Yiyang, et al. Resource utilization of copper smelter slag—A-state-of-the-arts review[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 3066-3073. | |
5 | 王国红. 铜冶炼炉渣缓冷技术研究与生产实践[J]. 铜业工程, 2014(4): 27-30. |
WANG Guohong. Copper smelting slag slow cooling technology research and practice[J]. Copper Engineering, 2014(4): 27-30. | |
6 | 张海鑫. 浅谈铜冶炼渣缓冷工艺[J]. 中国有色冶金, 2013, 42(3): 32-33. |
ZHANG Haixin. Discussion on slow cooling process of copper smelting slag[J]. China Nonferrous Metallurgy, 2013, 42(3): 32-33. | |
7 | LI Y, PEREDERIY I, PAPANGELAKIS V G. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching[J]. Journal of Hazardous Materials, 2008, 152(2): 607-615. |
8 | 孙建军, 黄自力, 杨蘖, 等. 铜冶炼渣硫酸浸出回收铜试验研究[J]. 矿产综合利用, 2017(6): 102-107. |
SUN Jianjun, HUANG Zili, YANG Nie, et al. Study on recovery of copper from copper smelting slag by sulfuric acid leaching[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 102-107. | |
9 | 黄斐荣, 廖亚龙, 王祎洋, 等. 响应曲面法优化镍转炉渣氧压选择性浸出工艺[J]. 环境科学研究, 2016, 29(6): 894-899. |
HUANG Feirong, LIAO Yalong, WANG Yiyang, et al. Optimization of pressure oxidative acid leaching of nickel converter slag by response surface methodology[J]. Research of Environmental Sciences, 2016, 29(6): 894-899. | |
10 | 廖亚龙, 黄斐荣, 周娟, 等. 低冰镍转炉渣中钴的氧压酸浸行为及其动力学[J]. 化工学报, 2015, 66(10): 3971-3978. |
LIAO Yalong, HUANG Feirong, ZHOU Juan, et al. Kinetics and behavior of cobalt extraction from low nickel matte converter slag by pressure oxidative leaching with sulfuric acid[J]. CIESC Journal, 2015, 66(10): 3971-3978. | |
11 | MONTGOMERY D C. Design and analysis of experiments, 8th ed.[J]. Environmental Progress & Sustainable Energy, 2013, 32(1): 8-10. |
12 | 王安琪, 王永良, 叶礼平, 等. 响应曲面法优化氧化铜渣浮选提铜工艺[J]. 化工学报, 2018, 69(7): 3018-3028. |
WANG Anqi, WANG Yongliang, YE Liping, et al. Optimization of recycling copper from copper oxide smelting slag by response surface methodology[J]. CIESC Journal, 2018, 69(7): 3018-3028. | |
13 | 曹磊, 廖亚龙, 史公初, 等. 锌置换渣加压酸性浸出过程铁的物相转化及其影响[J]. 中国有色金属学报, 2019, 29(2): 404-414. |
CAO Lei, LIAO Yalong, SHI Gongchu, et al. Phase transformation of iron and its effect in pressure acid leaching process for zinc replacement residue[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(2): 404-414. | |
14 | 赵艺文. 结合型罗布麻茶化学成分及其抗氧化活性研究[D]. 南京: 南京农业大学, 2017. |
ZHAO Yiwen. Studies on bound chemical components and their antioxidant activity of Apocynum venetum tea [D]. Nanjing: Nanjing Agricultural University, 2017. | |
15 | VITANOV V I, JAVAID N, STEPHENSON D J. Application of response surface methodology for the optimization of micro friction surfacing process[J]. Surface & Coatings Technology, 2010, 204(21): 3501-3508. |
16 | DAS P K, ZHENG Y. Cumulative formation of response surface and its use in reliability analysis[J]. Probabilistic Engineering Mechanics, 2000, 15(4): 309-315. |
17 | 黄斐荣. 镍转炉渣氧压硫酸浸出提取钴、镍、铜的研究[D]. 昆明: 昆明理工大学, 2016. |
HUANG Feirong. Extraction of cobalt, nickel and copper from nickel converter slag by oxygen pressure sulfuric acid leaching [D]. Kunming: Kunming University of Science and Technology, 2016. | |
18 | KEHOE S, ARDHAOUI M, STOKES J. Design of experiments study of hydroxyapatite synthesis for orthopedic application using fractional factorial design[J]. Journal of Material Engineering and Performance, 2011, 20(8): 1423-1437. |
19 | BARI M N, ALAM M Z, MUYIBI S A. Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs[J]. Bioresoure Technology, 2009, 100(12): 3115-3120. |
20 | ARBIU I, PEREZ C J L. Surface roughness prediction by factorial design of experiments in turning processes[J]. Journal of Materials Processing Technology, 2003, 143/144(1): 390-396. |
21 | SINGH A, BISHONI N R. Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae[J]. Industrial Crops and Products, 2012, 37(1): 334-341. |
22 | 葛宜元. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015: 14-18. |
GE Yiyuan. Test design method and design-expert software application[M]. Harbin: Harbin Institute of Technology Press, 2015: 14-18. | |
23 | GONZALEZ G A. Two level factorial experimental designs based on multiple linear regression models: a tutorial digest illustrated by case studies[J]. Analytica Chimica Acta, 1998, 360(1/2/3): 227-241. |
24 | 张烘州, 明伟伟, 安庆龙, 等. 响应曲面法在表面粗糙度预测模型及参数优化中的应用[J]. 上海交通大学学报, 2010, 44(4): 447-451. |
ZHANG Hongzhou, MING Weiwei, AN Qinglong, et al. Application of response surface methodology in surface roughness prediction model and parameter optimization[J]. Journal of Shanghai Jiaotong University, 2010, 44(4): 447-451. | |
25 | HE S M, WANG J K, YAN J F. Pressure leaching of synthetic zinc silicate in sulfuric acid medium[J]. Hydrometallurgy, 2011, 108(3/4): 171-176. |
26 | HUANG Feirong, LIAO Yalong, ZHOU Juan, et al. Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution[J]. Separation and Purification Technology, 2015, 156: 572-581. |
27 | DUFRESNE R E. Quick leach of siliceous zinc ore[J]. Journal of Metals, 1976, 28(2): 8-12. |
28 | XU H S, WEI C, LI C X, et al. Selective recovery of valuable metals from partial silicated sphalerite at elevated temperature with sulfuric acid solution[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1373-1381. |
29 | HE Shanming, WANG Jikun, YAN Jiangfeng. Pressure leaching of high silica Pb-Zn oxide ore in sulfuric acid medium[J]. Hydrometallurgy, 2010, 104(2): 235-240. |
30 | ZHANG L, TANG Y, HUA C, et al. A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques[J]. Applied Soft Computing, 2015, 28: 138-149. |
31 | EBERHART, SHI Y. Particle swarm optimization: developments, applications and resources[C]//MINJEA T, CORNE D. Proceeding of the 2001 Congress on Evolutionary Computation. Seoul: IEEE, 2001: 81-86. |
32 | 石松宁, 王大志, 时统宇. 基于RSM的永磁驱动器偏心磁极的多目标优化[J]. 仪器仪表学报, 2014, 35(9): 1963-1971. |
SHI Songning, WANG Dazhi, SHI Tongyu. Multi-objective optimization of eccentric magnet pole for permanent magnet drive based on response surface methodology[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 1963-1971. | |
33 | 吴加同. 复合材料舵固有频率与重量的优化设计[D]. 武汉: 华中科技大学, 2018. |
WU Jiatong. Optimization for natural frequency and weight of laminated composite rudder[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
34 | BRATTON D, KENNEDY J. Defining a standard for particle swarm optimization[C]//SHI Y, MARCO D. 2007 IEEE Swarm Intelligence Symposium. Honolulu: IEEE, 2007, 120-127. |
35 | 朱爱军, 李智, 许川佩. 三维IP核测试封装扫描链多目标优化设计[J]. 电子测量与仪器学报, 2014, 28(4): 373-380. |
ZHU Aijun, LI Zhi, XU Chuanpei. 3D IP core test wrapper scanning chain design based on multi-objective algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(4): 373-380. | |
36 | 高飞. MATLAB智能算法超级学习手册[M]. 北京: 人民邮电出版社, 2014: 224-248. |
GAO Fei. MATLAB & simulink books[M]. Beijing: Posts and Telecommunications Press, 2014: 224-248. | |
37 | ARSLAN C, ARSLAN F. Recovery of copper, cobalt, and zinc from copper smelter and converter slags[J]. Hydrometallurgy, 2002, 67(1/2/3): 1-7. |
[1] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[2] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[3] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
[4] | CHANG Tian, WANG Yu, ZHAO Zuotong, HU Jinchao, SHEN Zhenxing. Optimization of catalytic oxidation of trichloroethylene over Mn-Ce/HZSM-5 using response surface methodology [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5830-5842. |
[5] | LENG Nanjiang, MA Guoguang, ZHANG Tao, LEI Yang, PENG Hao, XIONG Zuoshuai, CHEN Yuting. Research and exploration on purification of natural gas with high organic sulfur content [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5342-5353. |
[6] | Ning JIANG, Shichao ZHAO, Xiaodong XIE, Wei FAN, Xinjie XU, Yingjie XU. Retrofit of heat integrated system of crude oil distillation system with multi-energy complementation by waste heat recovery [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 652-663. |
[7] | WANG Ben, WANG Chao, YIN Jinhua. Continuous-flow diazotization of methyl anthranilate in microreactor system [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5678-5691. |
[8] | Jiangwei XIE, Chunli LI, Guoming HUANG. Structural optimization of dividing wall column using response surface methodology coupled with NSGA-Ⅱ algorithm [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2962-2971. |
[9] | Binchao ZHANG,Minjing ZENG,Linan ZHANG,Hongxin WANG,Yu ZENG,Sinong HUANG,Junfeng WU,Yuanyuan CHENG,Bei LONG. Adsorption of Cu2+ by autotrophic nitrifying granular sludge and its adsorption isotherm [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1583-1590. |
[10] | Chunyu WANG,Ling ZHU,Danyun XU,Qingyue LUO. Process parameters optimization for degradation of benzene by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 402-412. |
[11] | Haixia HE, Yameng WAN, Huanzhe CHEN, Kunpeng YANG, Tao LI, Baozeng REN. Process optimization of preparation of manganese carbonate from manganese-containing titanium dioxide wastewater by response surface methodology [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2649-2657. |
[12] | Rongqian MENG, Shengjuan SHAO, Huifang WANG. Preparation technology and characterization of carvedilol dropping pills [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1887-1893. |
[13] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
[14] | FENG Hao, JIANG Bingxin, ZHANG Jianguo. Lipid accumulation by Umbelopsis isabellina from wheat bran hydrolysate [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4437-4443. |
[15] | ZHU Yonghong, DAN Yong, WANG Lisha, LI Dong, LI Wenhong. Process for aromatic type semi regeneration catalytic reforming of coal derived naphtha [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 947-955. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |