Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 761-771.DOI: 10.16085/j.issn.1000-6613.2018-0857

• Chemical processes and equipment • Previous Articles     Next Articles

3E Optimization of heat exchanger network system based on non-counterflow heat transfer

Ning JIANG(),Fengyuan GUO,Wenqiao HAN,Huajing LIU,Lu LIN   

  1. 1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
  • Received:2018-04-24 Revised:2018-07-21 Online:2019-02-05 Published:2019-02-05

基于非逆流传热的热交换网络系统的3E优化

蒋宁(),郭风元,韩文巧,刘华菁,林露   

  1. 1. 浙江工业大学机械工程学院,浙江 杭州 310032
  • 作者简介:第一作者简介::<named-content content-type="corresp-name">蒋宁</named-content>(1977—),女,博士,副教授,主要从事换热网络优化集成的研究。E-mail:<email>jiangning@zjut.edu.cn</email>。
  • 基金资助:
    浙江省自然科学基金(LY18E060010);国家自然科学基金(51206147)

Abstract:

Considering the non-counterflow effect on the heat transfer temperature difference, shell number and area of the heat exchanger, the heat exchanger network system involving the non-counterflow heat exchange is optimized. Based on the stage-wise superstructure with non-isothermal mixing and the comprehensive evaluation index of energy, economic and environmental (3E), a multi-objective mixed integer nonlinear programming (MO-MINLP) model for heat exchanger network optimization is established by introducing the correction factor of temperature difference. Systematic solution strategy and method based on non-dominated sorting genetic algorithm (NSGA-II) are proposed. A case study shows that the optimal design results of heat exchanger networks involving non-counterflow heat transfer are very different from those based on pure counterflow heat transfer hypothesis. The optimal solution can not be obtained only by modifying the design results based on pure counterflow heat transfer hypothesis. In order to ensure the optimization, reliability and practicability of the design results, the effect of temperature difference correction must be taken into account in the modeling. 3E evaluation reflects the trade-offs and constraints between energy consumption, economic benefit, and environmental impact of the heat exchanger network system, and makes the design of the system more practical. At the same time, the multi-objective optimization method can not only get the most economical results as the single-objective economic optimization, but also provide a variety of optimization solutions for choice, improve the flexibility of design, and can meet different design needs.

Key words: heat exchanger network, non-counterflow heat transfer, temperature difference correction, multi-objective optimization, non-dominated sorting genetic algorithm (NSGA-Ⅱ)

摘要:

考虑非逆流传热对换热设备传热温差、壳数和面积的影响,对包含非逆流换热设备的热交换网络系统进行优化设计。基于非等温混合分流分级超结构,采用能源、经济和环境(3E)综合评价指标,引入温差修正系数,建立了热交换网络多目标混合整数非线性规划(MO-MINLP)模型,并基于非支配排序遗传算法(NSGA-Ⅱ)提出了系统性的求解策略和求解方法。应用案例研究表明,涉及非逆流传热的热交换网络,其优化设计结果与基于纯逆流换热假设的设计结果有很大区别,且仅对基于纯逆流换热假设的设计结果进行修正并不能得到最优解,必须在建模中考虑温差修正效应的影响,从而保证设计结果的优化性、可靠性和实用性;3E评价反映了热交换网络系统在经济、能耗和环境影响之间的权衡和约束关系,使系统的设计更加实际,同时多目标的优化方法不但可以获得与单目标经济优化相当的最经济的结果,而且提供了多样性的优化解集供选择,提高了设计的灵活性,可以满足不同的设计需求。

关键词: 热交换网络, 非逆流传热, 温差修正, 多目标优化, 非支配排序遗传算法(NSGA-Ⅱ)

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd