Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3608-3616.DOI: 10.16085/j.issn.1000-6613.2020-1539
• Chemical processes and equipment • Previous Articles Next Articles
Received:
2020-08-04
Revised:
2020-09-25
Online:
2021-07-19
Published:
2021-07-06
Contact:
CUI Guomin
通讯作者:
崔国民
作者简介:
徐玥(1991—),女,博士研究生。E-mail: 基金资助:
CLC Number:
XU Yue, CUI Guomin. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616.
徐玥, 崔国民. 基于节点配置策略的有分流换热网络优化性能探析[J]. 化工进展, 2021, 40(7): 3608-3616.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1539
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 85 | 45 | 156.3 | 0.05 |
H2 | 120 | 40 | 50 | 0.05 |
H3 | 125 | 35 | 23.9 | 0.05 |
H4 | 56 | 46 | 1250 | 0.05 |
H5 | 90 | 86 | 1500 | 0.05 |
H6 | 225 | 75 | 50 | 0.05 |
C1 | 40 | 55 | 466.7 | 0.05 |
C2 | 55 | 65 | 600 | 0.05 |
C3 | 65 | 165 | 180 | 0.05 |
C4 | 10 | 170 | 81.3 | 0.05 |
HU | 200 | 180 | 0.05 | |
CU | 15 | 20 | 0.05 | |
热交换器成本=60A USD·a-1 (A in m2) | ||||
热公用工程成本= 100USD·kW-1·a-1 | ||||
冷公用工程成本=15USD·kW-1·a-1 |
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 85 | 45 | 156.3 | 0.05 |
H2 | 120 | 40 | 50 | 0.05 |
H3 | 125 | 35 | 23.9 | 0.05 |
H4 | 56 | 46 | 1250 | 0.05 |
H5 | 90 | 86 | 1500 | 0.05 |
H6 | 225 | 75 | 50 | 0.05 |
C1 | 40 | 55 | 466.7 | 0.05 |
C2 | 55 | 65 | 600 | 0.05 |
C3 | 65 | 165 | 180 | 0.05 |
C4 | 10 | 170 | 81.3 | 0.05 |
HU | 200 | 180 | 0.05 | |
CU | 15 | 20 | 0.05 | |
热交换器成本=60A USD·a-1 (A in m2) | ||||
热公用工程成本= 100USD·kW-1·a-1 | ||||
冷公用工程成本=15USD·kW-1·a-1 |
节点 | NdH | NdC | NfH | NfC | MbH | MbC | TAC/USD·a-1 | R-NfH | R-NfC | 分流所在流股 |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 10 | 10 | 3 | 3 | 1 | 1 | 5586361 | 0 | 4 | C1 |
A2 | 6 | 6 | 5 | 5 | 1 | 1 | 5588318 | 0 | 8 | C1、C2、C4 |
B1 | 8 | 8 | 3 | 3 | 1 | 1 | 5586578 | 0 | 6 | C1、C4 |
B2 | 6 | 6 | 4 | 4 | 1 | 1 | 5587797 | 0 | 6 | C1、C2、C4 |
B3 | 12 | 12 | 2 | 2 | 1 | 1 | 5587211 | 0 | 4 | C1、C2 |
节点 | NdH | NdC | NfH | NfC | MbH | MbC | TAC/USD·a-1 | R-NfH | R-NfC | 分流所在流股 |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 10 | 10 | 3 | 3 | 1 | 1 | 5586361 | 0 | 4 | C1 |
A2 | 6 | 6 | 5 | 5 | 1 | 1 | 5588318 | 0 | 8 | C1、C2、C4 |
B1 | 8 | 8 | 3 | 3 | 1 | 1 | 5586578 | 0 | 6 | C1、C4 |
B2 | 6 | 6 | 4 | 4 | 1 | 1 | 5587797 | 0 | 6 | C1、C2、C4 |
B3 | 12 | 12 | 2 | 2 | 1 | 1 | 5587211 | 0 | 4 | C1、C2 |
i | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
NfH(i) | 1 | 1 | 1 | 3 | 3 | 1 |
NdH(i) | 30 | 30 | 30 | 10 | 10 | 30 |
j | 1 | 2 | 3 | 4 | ||
NfC(j) | 3 | 3 | 2 | 1 | ||
NdC(j) | 10 | 10 | 15 | 30 |
i | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
NfH(i) | 1 | 1 | 1 | 3 | 3 | 1 |
NdH(i) | 30 | 30 | 30 | 10 | 10 | 30 |
j | 1 | 2 | 3 | 4 | ||
NfC(j) | 3 | 3 | 2 | 1 | ||
NdC(j) | 10 | 10 | 15 | 30 |
文献 | TAC/ USD·a-1 | 单元 | 热公用工程/MW | 冷公用工程/MW |
---|---|---|---|---|
[ | 7074000 | — | — | — |
[ | 5672821 | 13 | 20529.3 | 14923.8 |
[ | 5636048 | 15 | 20297 | 14691 |
[ | 5596079 | 18 | 20339 | 14733.5 |
[ | 5587883① | 19 | 20315.5 | 14711.9 |
[ | 5585632① | 17 | 19442.1 | 14837.3 |
本文 | 5585292① | 25 | 20216.2 | 14601.8 |
文献 | TAC/ USD·a-1 | 单元 | 热公用工程/MW | 冷公用工程/MW |
---|---|---|---|---|
[ | 7074000 | — | — | — |
[ | 5672821 | 13 | 20529.3 | 14923.8 |
[ | 5636048 | 15 | 20297 | 14691 |
[ | 5596079 | 18 | 20339 | 14733.5 |
[ | 5587883① | 19 | 20315.5 | 14711.9 |
[ | 5585632① | 17 | 19442.1 | 14837.3 |
本文 | 5585292① | 25 | 20216.2 | 14601.8 |
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2 |
H2 | 280 | 120 | 60 | 1 |
H3 | 180 | 75 | 30 | 2 |
H4 | 140 | 40 | 30 | 1 |
H5 | 220 | 120 | 50 | 1 |
H6 | 180 | 55 | 35 | 2 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1 |
C2 | 100 | 220 | 60 | 1 |
C3 | 40 | 190 | 35 | 2 |
C4 | 50 | 190 | 30 | 2 |
C5 | 50 | 250 | 60 | 2 |
C6 | 90 | 190 | 50 | 1 |
C7 | 160 | 250 | 60 | 3 |
HU | 325 | 325 | 1 | |
CU | 25 | 40 | 2 | |
热交换器成本=8000+500A0.75 USD·a-1 (A in m2) | ||||
热公用工程成本=80USD·kW-1·a-1 | ||||
冷公用工程成本=10USD·kW-1·a-1 |
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2 |
H2 | 280 | 120 | 60 | 1 |
H3 | 180 | 75 | 30 | 2 |
H4 | 140 | 40 | 30 | 1 |
H5 | 220 | 120 | 50 | 1 |
H6 | 180 | 55 | 35 | 2 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1 |
C2 | 100 | 220 | 60 | 1 |
C3 | 40 | 190 | 35 | 2 |
C4 | 50 | 190 | 30 | 2 |
C5 | 50 | 250 | 60 | 2 |
C6 | 90 | 190 | 50 | 1 |
C7 | 160 | 250 | 60 | 3 |
HU | 325 | 325 | 1 | |
CU | 25 | 40 | 2 | |
热交换器成本=8000+500A0.75 USD·a-1 (A in m2) | ||||
热公用工程成本=80USD·kW-1·a-1 | ||||
冷公用工程成本=10USD·kW-1·a-1 |
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
NfH(i) | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 |
NdH(i) | 8 | 5 | 8 | 8 | 8 | 8 | 8 | 5 |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
NfC(j) | 2 | 4 | 3 | 3 | 4 | 4 | 4 | |
NdC(j) | 8 | 4 | 6 | 6 | 4 | 4 | 4 |
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
NfH(i) | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 |
NdH(i) | 8 | 5 | 8 | 8 | 8 | 8 | 8 | 5 |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
NfC(j) | 2 | 4 | 3 | 3 | 4 | 4 | 4 | |
NdC(j) | 8 | 4 | 6 | 6 | 4 | 4 | 4 |
文献 | TAC/USD·a-1 | 单元 | 热公用工程 | 冷公用工程 |
---|---|---|---|---|
[ | 1513854 | — | — | — |
[ | 1530063① | — | — | — |
[ | 1527240 | 19 | 10.11 | 7.73 |
[ | 1525394 | 19 | ||
[ | 1510891① | 15 | 10.61 | 8.24 |
[ | 1507290① | 19 | — | — |
[ | 1501070① | 18 | 10.28 | 7.9 |
[ | 1497325① | 17 | — | — |
[ | 1494913① | 17 | 9.76 | 7.38 |
1492628① | 16 | 9.74 | 7.37 |
文献 | TAC/USD·a-1 | 单元 | 热公用工程 | 冷公用工程 |
---|---|---|---|---|
[ | 1513854 | — | — | — |
[ | 1530063① | — | — | — |
[ | 1527240 | 19 | 10.11 | 7.73 |
[ | 1525394 | 19 | ||
[ | 1510891① | 15 | 10.61 | 8.24 |
[ | 1507290① | 19 | — | — |
[ | 1501070① | 18 | 10.28 | 7.9 |
[ | 1497325① | 17 | — | — |
[ | 1494913① | 17 | 9.76 | 7.38 |
1492628① | 16 | 9.74 | 7.37 |
1 | Fu YEE T, GROSSMANN I E. Simultaneous optimization models for heat integration (Ⅱ): Heat exchanger network synthesis [J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
2 | CHEN Shang, CUI Guomin. Uniformity factor of temperature difference in heat exchanger networks [J]. Applied Thermal Engineering, 2016, 102: 1366-1373. |
3 | PAVÃO L V, COSTA C, RAVAGNANI M. A new stage-wise superstructure for heat exchanger network synthesis considering substages, sub-splits and cross flows [J]. Applied Thermal Engineering, 2018, 143: 719-735. |
4 | PAVÃO L V, COSTA C, RAVAGNANI M. An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement [J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573. |
5 | 鲍中凯, 崔国民, 曹冲, 等. 基于公用工程内置策略的换热网络优化[J]. 计算物理, 2019, 36(6): 707-718. |
BAO Zhongkai, CUI Guomin, CAO Chong, et al. Heat exchanger network optimization based on inner utility placement strategy [J]. Chinese Journal of Computational Physics, 2019, 36(6): 707-718. | |
6 | PONCE-ORTEGA J M, SERNA-GONZÁLEZ M, JIMÉNEZ-GUTIÉRREZ A. Synthesis of heat exchanger networks with optimal placement of multiple utilities [J]. Industrial Engineering Chemical Research, 2010, 49: 2849-2856. |
7 | NA Jonggeol, JUNG Jaeheum, PARK Chansaem, et al. Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages [J]. Computers and Chemical Engineering, 2015, 79: 70-79. |
8 | HONG Xiaodong, LIAO Zuwei, SUN Jingyuan, et al. Trasshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams [J]. Energy, 2019(178): 853-866. |
9 | HONG Xiaodong, LIAO Zuwei, JIANG Binbo, et al. New transshipment type MINLP model for heat exchanger network synthesis [J]. Chemical Engineering Science. 2017, 173: 537-559. |
10 | HONG Xiaodong, LIAO Zuwei, SUN Jingyuan, et al. Indirect heat integration across plants: novel representation of intermediate fluid circles [J]. I&EC Research, 2019, 58: 7233-7246. |
11 | 刘璞, 崔国民, 肖媛, 等. 具有步长调整策略的强制进化随机游走算法优化换热网络[J]. 化工进展, 2017, 36(2): 442-450. |
LIU Pu, CUI Guomin, XIAO Yuan, et al. Optimizing heat exchanger network by random walking algorithm with compulsive evolution combined with step length adjustment strategy [J]. Chemical Industry and Engineering Progress, 2017, 36(2): 442-450. | |
12 | 苏戈曼, 崔国民, 鲍中凯, 等. RWCE优化换热网络的不可行解影响分析及强化策略[J]. 化工进展, 2020, 39(1): 14-25. |
SU Geman, CUI Guomin, BAO Zhongkai, et al. Influence analysis and enhancement strategy of infeasible solutions for heat exchanger network optimization with RWCE [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 14-25. | |
13 | 邓炜栋, 崔国民, 陈家星, 等. 带惩罚的逆梯度进化算法应用于换热网络[J]. 化工进展, 2018, 37(7): 2500-2509. |
DENG Weidong, CUI Guomin, CHEN Jiaxing, et al. Heat exchange network optimization by inverse gradient evolution strategy with penalty [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2500-2509. | |
14 | 肖媛. 换热网络热集成的全局优化方法及超结构模型研究[D]. 上海: 上海理工大学, 2019. |
XIAO Yuan. Global optimization methods and superstructure model for heat integration of heat exchanger networks [D]. Shanghai: University of Shanghai for Science & Technology, 2019. | |
15 | XU Yue, KAYANGE H A, CUI Guomin. A nodes-based non-structural model considering a series structure for heat exchanger network synthesis [J]. Processes, 2020, 8(695): 1-16. |
16 | XIAO Yuan, CUI Guomin. A novel random walk algorithm with compulsive evolution for heat exchanger network synthesis [J]. Applied Thermal Engineering, 2017, 115: 1118-1127. |
17 | AHMAD S. Heat exchanger networks: cost tradeoffs in energy and capital [D]. Manchester: University of Manchester Institute of Science and Technology, 1985. |
18 | BAO Zhongkai, CUI Guomin, CHEN Jiaxing, et al. A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis [J]. Energy, 2018, 152: 694-708. |
19 | 孙涛, 崔国民, 陈家星, 等. 采用分流比差异优化策略RWCE算法优化换热网络[J]. 工程热物理学报, 2019, 40(1): 183-190. |
SUN Tao, CUI Guomin, CHEN Jiaxing, et al. Split ratio difference optimization strategy of RWCE algorithm for heat exchanger network synthesis [J]. Journal of Engineering Thermophysics, 2019, 40(1): 183-190. | |
20 | 陈子禾, 崔国民, 徐玥, 等. 基于控制参数动态协调策略的换热网络优化研究[J]. 工程热物理学报, 2020, 41(4): 957-965. |
CHEN Zihe, CUI Guomin, XU Yue, et al. Study on heat exchanger network optimization based on dynamic coordination strategy of control parameters [J]. Journal of Engineering Thermophysics, 2020, 41(4): 957-965. | |
21 | RAVAGNANI M, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimization using genetic algorithm [J]. Applied Thermal Engineering, 2005, 25(7): 1003-1017. |
22 | 彭富裕, 崔国民, 陈家星. 基于模拟退火算法的换热网络双层优化方法[J]. 石油化工, 2014, 43(5): 536-544. |
PENG Fuyu, CUI Guomin, CHEN Jiaxing. Bilevel optimization method for heat exchanger network synthesis based on simulated annealing algorithm [J]. Petrochemical Technology, 2014, 43(5): 536-544. | |
23 | PENG Fuyu, CUI Guomin. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 32(6): 693-700. |
24 | BJÖRK K M, PETTERSSON F. Optimization of large-scale heat exchanger network synthesis problems [C]// Proceeding of the ISATED International Conference on Modelling and Simulation. Palm Springs. USA, 2003: 313-318. |
25 | BJÖRK K M, NORDMAN R. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods [J]. Chemical Engineering and Process, 2005, 44: 869-876. |
26 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Heat exchanger network synthesis without stream splits using parallel and simplified simulated annealing and particle swarm optimization [J]. Chemical Engineering Science, 2017, 158: 96-107. |
27 | FIEG G, LUO Xing, JEZOWSKI J. A monogenetic algorithm for optimal design of large-scale heat exchanger networks [J]. Chemical Engineering and Process, 2009, 48: 1506-1516. |
28 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization [J]. AIChE Journal, 2007, 63: 1582-1601. |
29 | MATTHIAS R, GEORG F. A novel hybrid strategy for cost-optimal heat exchanger network synthesis suited for large-scale problems [J]. Applied Thermal Engineering, 2020, 167: 114771. |
30 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S, et al. Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach [J]. Applied Energy, 2017, 203: 304-320. |
31 | 徐玥, 崔国民. 应用结构摄动策略的有分流换热网络优化[J]. 计算物理, 2020(1): 1-12. |
XU Yue, CUI Guomin. The heat exchanger network optimization using structural perturbation strategy [J]. Chinese Journal of Computational Physics, 2020(1): 1-12. |
[1] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[2] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[3] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[4] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[5] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[6] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[7] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[8] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[9] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[12] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[13] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[14] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[15] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |