Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 14-25.DOI: 10.16085/j.issn.1000-6613.2019-0595
• Chemical processes and equipment • Previous Articles Next Articles
Geman SU(),Guomin CUI(),Zhongkai BAO,Yuan XIAO,Aowei JIANG
Received:
2019-04-15
Online:
2020-01-14
Published:
2020-01-05
Contact:
Guomin CUI
通讯作者:
崔国民
作者简介:
苏戈曼(1995—),女,硕士研究生,研究方向为过程系统优化。E-mail:基金资助:
CLC Number:
Geman SU,Guomin CUI,Zhongkai BAO,Yuan XIAO,Aowei JIANG. Influence analysis and enhancement strategy of infeasible solutions for heat exchanger network optimization with RWCE[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 14-25.
苏戈曼,崔国民,鲍中凯,肖媛,蒋奥炜. RWCE优化换热网络的不可行解影响分析及强化策略[J]. 化工进展, 2020, 39(1): 14-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0595
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 327 | 40 | 100 | 0.5 |
H2 | 220 | 160 | 160 | 0.4 |
H3 | 220 | 60 | 60 | 0.14 |
H4 | 160 | 45 | 400 | 0.3 |
C1 | 100 | 300 | 100 | 0.35 |
C2 | 35 | 164 | 70 | 0.7 |
C3 | 85 | 138 | 350 | 0.5 |
C4 | 60 | 170 | 60 | 0.14 |
C5 | 140 | 300 | 200 | 0.6 |
HU | 330 | 250 | — | 0.5 |
CU | 15 | 30 | — | 0.5 |
换热器费用=2000+70A USD·a-1(A的单位为m2) | ||||
热公用工程费用=60USD·kW-1·a-1 | ||||
冷公用工程费用=6USD·kW-1·a-1 |
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 327 | 40 | 100 | 0.5 |
H2 | 220 | 160 | 160 | 0.4 |
H3 | 220 | 60 | 60 | 0.14 |
H4 | 160 | 45 | 400 | 0.3 |
C1 | 100 | 300 | 100 | 0.35 |
C2 | 35 | 164 | 70 | 0.7 |
C3 | 85 | 138 | 350 | 0.5 |
C4 | 60 | 170 | 60 | 0.14 |
C5 | 140 | 300 | 200 | 0.6 |
HU | 330 | 250 | — | 0.5 |
CU | 15 | 30 | — | 0.5 |
换热器费用=2000+70A USD·a-1(A的单位为m2) | ||||
热公用工程费用=60USD·kW-1·a-1 | ||||
冷公用工程费用=6USD·kW-1·a-1 |
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 10537 | 1778 | 16.9 |
0.25~0.50 | 5260 | 771 | 14.7 |
0.50~0.75 | 2468 | 325 | 13.2 |
0.75~1.00 | 1285 | 151 | 11.8 |
1.00~1.25 | 700 | 70 | 10.0 |
1.25~1.50 | 331 | 36 | 10.9 |
1.50~1.75 | 200 | 14 | 7.0 |
1.75~2.00 | 103 | 10 | 9.7 |
2.00~2.25 | 53 | 5 | 9.4 |
2.25~2.50 | 25 | 2 | 8.0 |
2.50~2.75 | 14 | 0 | 0.0 |
2.75~3.00 | 4 | 0 | 0.0 |
3.00~3.25 | 1 | 0 | 0.0 |
3.25~3.50 | 3 | 0 | 0.0 |
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 10537 | 1778 | 16.9 |
0.25~0.50 | 5260 | 771 | 14.7 |
0.50~0.75 | 2468 | 325 | 13.2 |
0.75~1.00 | 1285 | 151 | 11.8 |
1.00~1.25 | 700 | 70 | 10.0 |
1.25~1.50 | 331 | 36 | 10.9 |
1.50~1.75 | 200 | 14 | 7.0 |
1.75~2.00 | 103 | 10 | 9.7 |
2.00~2.25 | 53 | 5 | 9.4 |
2.25~2.50 | 25 | 2 | 8.0 |
2.50~2.75 | 14 | 0 | 0.0 |
2.75~3.00 | 4 | 0 | 0.0 |
3.00~3.25 | 1 | 0 | 0.0 |
3.25~3.50 | 3 | 0 | 0.0 |
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 51229 | 10584 | 20.7 |
0.25~0.50 | 9654 | 1693 | 17.5 |
0.50~0.75 | 1690 | 258 | 15.3 |
0.75~1.00 | 377 | 65 | 17.2 |
1.00~1.25 | 68 | 6 | 8.8 |
1.25~1.50 | 16 | 1 | 6.3 |
1.50~1.75 | 3 | 0 | 0 |
1.75~2.00 | 2 | 0 | 0 |
2.00~2.25 | 0 | 0 | 0 |
2.25~2.50 | 0 | 0 | 0 |
2.50~2.75 | 0 | 0 | 0 |
2.75~3.00 | 0 | 0 | 0 |
3.00~3.25 | 0 | 0 | 0 |
3.25~3.50 | 0 | 0 | 0 |
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 51229 | 10584 | 20.7 |
0.25~0.50 | 9654 | 1693 | 17.5 |
0.50~0.75 | 1690 | 258 | 15.3 |
0.75~1.00 | 377 | 65 | 17.2 |
1.00~1.25 | 68 | 6 | 8.8 |
1.25~1.50 | 16 | 1 | 6.3 |
1.50~1.75 | 3 | 0 | 0 |
1.75~2.00 | 2 | 0 | 0 |
2.00~2.25 | 0 | 0 | 0 |
2.25~2.50 | 0 | 0 | 0 |
2.50~2.75 | 0 | 0 | 0 |
2.75~3.00 | 0 | 0 | 0 |
3.00~3.25 | 0 | 0 | 0 |
3.25~3.50 | 0 | 0 | 0 |
迭代步数 | 种群1中历史最优解TAC/USD·a-1 | 种群2可行化后TAC/USD·a-1 | 可行化耗费步数 |
---|---|---|---|
5.00×106 | 2923899 | 2924403 | 25 |
7.75×106 | 2922240 | 2920012 | 33 |
1.11×107 | 2921928 | 2922789 | 14 |
1.20×107 | 2921429 | 2922543 | 35 |
1.21×107 | 2919912 | 2920831 | 48 |
迭代步数 | 种群1中历史最优解TAC/USD·a-1 | 种群2可行化后TAC/USD·a-1 | 可行化耗费步数 |
---|---|---|---|
5.00×106 | 2923899 | 2924403 | 25 |
7.75×106 | 2922240 | 2920012 | 33 |
1.11×107 | 2921928 | 2922789 | 14 |
1.20×107 | 2921429 | 2922543 | 35 |
1.21×107 | 2919912 | 2920831 | 48 |
流股 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 385 | 159 | 131.51 | 1.238 |
H2 | 516 | 43 | 1198.96 | 0.546 |
H3 | 132 | 82 | 378.52 | 0.771 |
H4 | 91 | 60 | 589.545 | 0.859 |
H5 | 217 | 43 | 186.216 | 1.000 |
H6 | 649 | 43 | 116 | 1.000 |
C1 | 30 | 385 | 119.1 | 1.850 |
C2 | 99 | 471 | 191.05 | 1.129 |
C3 | 437 | 521 | 377.91 | 0.815 |
C4 | 78 | 418.6 | 160.43 | 1.000 |
C5 | 217 | 234 | 1297,7 | 0.443 |
C6 | 256 | 266 | 2753 | 2.085 |
C7 | 49 | 149 | 197.39 | 1.000 |
C8 | 59 | 163.4 | 123.156 | 1.063 |
C9 | 163 | 649 | 95.98 | 1.810 |
C10 | 219 | 221.3 | 1997.5 | 1.377 |
HU | 1800 | 800 | — | 1.2 |
CU | 38 | 82 | — | 1.0 |
换热器费用=26600+4147.5A0.6 USD·a-1(A的单位为m2) 热公用工程费用=35.0USD·kW-1·a-1 冷公用工程费用=2.1USD·kW-1·a-1 |
流股 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 385 | 159 | 131.51 | 1.238 |
H2 | 516 | 43 | 1198.96 | 0.546 |
H3 | 132 | 82 | 378.52 | 0.771 |
H4 | 91 | 60 | 589.545 | 0.859 |
H5 | 217 | 43 | 186.216 | 1.000 |
H6 | 649 | 43 | 116 | 1.000 |
C1 | 30 | 385 | 119.1 | 1.850 |
C2 | 99 | 471 | 191.05 | 1.129 |
C3 | 437 | 521 | 377.91 | 0.815 |
C4 | 78 | 418.6 | 160.43 | 1.000 |
C5 | 217 | 234 | 1297,7 | 0.443 |
C6 | 256 | 266 | 2753 | 2.085 |
C7 | 49 | 149 | 197.39 | 1.000 |
C8 | 59 | 163.4 | 123.156 | 1.063 |
C9 | 163 | 649 | 95.98 | 1.810 |
C10 | 219 | 221.3 | 1997.5 | 1.377 |
HU | 1800 | 800 | — | 1.2 |
CU | 38 | 82 | — | 1.0 |
换热器费用=26600+4147.5A0.6 USD·a-1(A的单位为m2) 热公用工程费用=35.0USD·kW-1·a-1 冷公用工程费用=2.1USD·kW-1·a-1 |
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Khorasany 等[ | 77.15 | 469.86 | 18 | 7435740(有分流) |
Zhao等[ | 38.80 | 442.37 | 16 | 7361190 |
Pav?o等[ | — | — | 17 | 7301437(有分流) |
Chen 等[ | 14.33 | 417.89 | 19 | 6989989 |
Bao 等[ | 10.66 | 414.22 | 19 | 6848726(有分流) |
Zhang 等[ | 10.62 | 414.19 | 18 | 6861111 |
本文RWCE( | 10.60 | 414.17 | 19 | 6931859 |
本文ERWCE( | 9.88 | 413.44 | 18 | 6837245 |
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Khorasany 等[ | 77.15 | 469.86 | 18 | 7435740(有分流) |
Zhao等[ | 38.80 | 442.37 | 16 | 7361190 |
Pav?o等[ | — | — | 17 | 7301437(有分流) |
Chen 等[ | 14.33 | 417.89 | 19 | 6989989 |
Bao 等[ | 10.66 | 414.22 | 19 | 6848726(有分流) |
Zhang 等[ | 10.62 | 414.19 | 18 | 6861111 |
本文RWCE( | 10.60 | 414.17 | 19 | 6931859 |
本文ERWCE( | 9.88 | 413.44 | 18 | 6837245 |
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率 /kW·℃-1 | 换热系数 /kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2.0 |
H2 | 280 | 120 | 60 | 1.0 |
H3 | 180 | 75 | 30 | 2.0 |
H4 | 140 | 40 | 30 | 1.0 |
H5 | 220 | 120 | 50 | 1.0 |
H6 | 180 | 55 | 35 | 2.0 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1.0 |
C2 | 100 | 220 | 60 | 1.0 |
C3 | 40 | 190 | 35 | 2.0 |
C4 | 50 | 190 | 30 | 2.0 |
C5 | 50 | 250 | 60 | 2.0 |
C6 | 90 | 190 | 50 | 1.0 |
C7 | 160 | 250 | 60 | 3.0 |
HU | 325 | 325 | — | 1.0 |
CU | 25 | 40 | — | 2.0 |
换热器费用=8000+500A0.75USD·a-1(A的单位为m2) 热公用工程费用=80USD·kW-1·a-1 冷公用工程费用=10USD·kW-1·a-1 |
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率 /kW·℃-1 | 换热系数 /kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2.0 |
H2 | 280 | 120 | 60 | 1.0 |
H3 | 180 | 75 | 30 | 2.0 |
H4 | 140 | 40 | 30 | 1.0 |
H5 | 220 | 120 | 50 | 1.0 |
H6 | 180 | 55 | 35 | 2.0 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1.0 |
C2 | 100 | 220 | 60 | 1.0 |
C3 | 40 | 190 | 35 | 2.0 |
C4 | 50 | 190 | 30 | 2.0 |
C5 | 50 | 250 | 60 | 2.0 |
C6 | 90 | 190 | 50 | 1.0 |
C7 | 160 | 250 | 60 | 3.0 |
HU | 325 | 325 | — | 1.0 |
CU | 25 | 40 | — | 2.0 |
换热器费用=8000+500A0.75USD·a-1(A的单位为m2) 热公用工程费用=80USD·kW-1·a-1 冷公用工程费用=10USD·kW-1·a-1 |
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Bj?rk 和 Pettersson[ | — | — | — | 1513854(有分流) |
Bj?rk 和 Nordman[ | — | — | — | 1530063(有分流) |
Fieg[ | 10.62 | 8.24 | 15 | 1510891(有分流) |
Pav?o等[ | 10.24 | 7.86 | 19 | 1525394 |
Wang等[ | 9.52 | 7.93 | 19 | 1519250 |
Xiao等[ | 10.31 | 7.93 | 19 | 1518968 |
本文RWCE | 10.32 | 7.94 | 19 | 1519103 |
本文ERWCE( | 10.41 | 8.04 | 18 | 1511689 |
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Bj?rk 和 Pettersson[ | — | — | — | 1513854(有分流) |
Bj?rk 和 Nordman[ | — | — | — | 1530063(有分流) |
Fieg[ | 10.62 | 8.24 | 15 | 1510891(有分流) |
Pav?o等[ | 10.24 | 7.86 | 19 | 1525394 |
Wang等[ | 9.52 | 7.93 | 19 | 1519250 |
Xiao等[ | 10.31 | 7.93 | 19 | 1518968 |
本文RWCE | 10.32 | 7.94 | 19 | 1519103 |
本文ERWCE( | 10.41 | 8.04 | 18 | 1511689 |
1 | YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration—Ⅰ. Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1116-1151. |
2 | YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration—Ⅱ. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1118-1165. |
3 | HE Q, CUI G. A principle of stream arrangement based on uniformity factor for heat exchanger networks synthesis[J]. Applied Thermal Engineering, 2013, 61(2): 93-100. |
4 | ZHANG H, CUI G, XIAO Y, et al. A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 48(31): 1659-1673. |
5 | HONG X, LIAO Z, JIANG B, et al. New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science, 2017, 173: 537-559. |
6 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573. |
7 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. A new stage-wise superstructure for heat exchanger network synthesis considering substages, sub-splits and cross flows[J]. Applied Thermal Engineering, 2018(143): 719-735. |
8 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S, et al. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization[J]. AIChE Journal, 2017, 63(5): 1582-1601. |
9 | 张春伟, 崔国民, 陈上, 等. 采用结构进化策略的Lagrange乘子法优化换热网络[J]. 化工进展, 2016, 35(4): 1047-1055. |
ZHANG C W, CUI G M, CHEN S, et al. Lagrange multiplier method combined with structure evolution strategy for heat exchanger network synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1047-1055. | |
10 | ABADIE J, CARPENTIER J. Generalization of the Wolfe Reduced Gradient Method to the case of nonlinear constraints optimization[J]. Science, 1992, 117(3049): 640-641. |
11 | 赵凤治, 尉继英. 约束最优化计算方法[M]. 北京: 科学出版社, 1991: 290-328. |
ZHAO F Z, WEI J Y. Constrained optimization method [M]. Beijing: Science Press, 1991: 290-328. | |
12 | RICHARDSON J T, PALMER M R, LIEPINS G E, et al. Some guidelines for genetic algorithms with penalty functions [C]//Proceedings of the 3rd international conference on genetic algorithms. San Francisco: Morgan Kaufmann Publishers Inc., 1989: 191-197. |
13 | 方大俊, 崔国民, 许海珠, 等. 基于罚因子协进化微分算法优化换热网络[J]. 高校化学工程学报, 2015, 29(2): 407-412. |
FAND D J, CUI G M, XU H Z, et al. Optimization of heat exchanger networks with cooperation differential evolution algorithm based on penalty factors[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 407-412. | |
14 | KRISHNA S B, RANG G P. Heat exchanger network retrofitting: evaluation of penalty function and feasibility approach for constraint handling [C]//LEONG Y K. Chemeca2014: processing excellence; powering our future. Western Australia, 2014: 165-173. |
15 | RAVAGNANI M A S S, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25(7): 1003-1017. |
16 | SILVA A P, RAVAGNANI M A S S, et al. Optimal heat exchanger network synthesis using particle swarm optimization[J]. Optimization and Engineering, 2010, 11(3): 459-470. |
17 | YERRAMSETTY K M, MURTY C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution[J]. Computers and Chemical Engineering, 2008, 32(8): 1861-1876. |
18 | PENG F, CUI G. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 78: 136-149. |
19 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization[J]. Chemical Engineering Science, 2017, 158: 96-107. |
20 | XIAO Y, CUI G. A novel random walk algorithm with compulsive evolution for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 115: 1118-1127. |
21 | BRIONES V, KOKOSSIS A C. Hypertarget: a conceptual programming approach for the optimisation of industrial heat exchanger networks: Ⅱ. Retrofit design[J]. Chemical Engineering Science, 1999, 54(4): 541-561. |
22 | KHORASANY R M, FESANGHARY M. A novel approach for synthesis of cost-optimal heat exchanger networks[J]. Computers and Chemical Engineering, 2009, 33(8): 1363-1370. |
23 | ZHANG H, CUI G. Optimal heat exchanger network synthesis based on improved cuckoo search via Lévy flights[J]. Chemical Engineering Research and Design, 2018, 134: 62-79. |
24 | 鲍中凯,崔国民,陈家星.采用结构保护策略的强制进化随机游走算法优化换热网络[J]. 化工学报, 2017, 68(9): 3522-3531. |
BAO Z K, GUI G M, CHEN J X. Optimization of heat exchanger network by random walk algorithm with compulsive evolution with structure-protection strategy[J]. CIESC Journal, 2017, 68(9): 3522-3531. | |
25 | ZHAO Y H, LIANG Z, HONG C Y, et al. Simultaneous synthesis of structural-constrained heat exchanger networks with and without stream splits[J]. Canadian Journal of Chemical Engineering, 2013, 91(5): 830-842. |
26 | CHEN J, CUI G, DUAN H. Multipopulation differential evolution algorithm based on the opposition-based learning for heat exchanger network synthesis[J]. Numerical Heat Transfer Part A:Applications, 2017, 72(2): 126-140. |
27 | BJÖRK K M, PETTERSSON F. Optimization of large-scale heat exchanger network synthesis problems[C]//Proceeding of the IASTED International Conference on Modelling, Simulation and Optimatization, 2003: 313-318. |
28 | FIEG G, LUO X, JEŻOWSKI J. A monogenetic algorithm for optimal design of large-scale heat exchanger networks[J]. Chemical Engineering and Processing, 2009, 48(11/12): 1506-1516. |
29 | BJÖRK K M, NORDMAN R. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods[J]. Chemical Engineering and Processing, 2005, 44(8): 869-876. |
30 | WANG J, CUI G, XIAO Y, et al. Bi-level heat exchanger network synthesis with evolution method for structure optimization and memetic particle swarm optimization for parameter optimization[J]. Engineering Optimization, 2017, 49(3): 401-416. |
[1] | ZHU Tianyu, SUN Lin, REN Chao, LUO Xionglin. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205. |
[2] | JIANG Ning, ZHANG Yuanyi, FAN Wei, ZHAO Shichao, XU Xinjie, XU Yingjie. Cleaning decision of heat exchanger network based on intelligent prediction and mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1781-1792. |
[3] | XU Yue, CUI Guomin. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616. |
[4] | Yingdi SHAO, Jianhang HU, Huili LIU, Zhengda CAI. Energy efficiency analysis of heat exchange network of isobutylene purification unit [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 57-65. |
[5] | Ning JIANG, Wei FAN, Xiaodong XIE, Fengyuan GUO, Enteng LI, Shichao ZHAO. Comparative study of NSGA-Ⅱ and NSGA-Ⅲ on multi-objective optimization of heat exchanger network [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2534-2547. |
[6] | Geman SU, Guomin CUI, Yuan XIAO, Qianqian ZHAO. Influence analysis and strategy improvement of heat exchanger generation frequency in heat exchanger networks optimization [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3879-3891. |
[7] | Chang LIU,Shiyu LI,Xiaolan XIE. Integration of heat storage in batch processes considering additional approach temperature difference for indirect heat transfer [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 72-79. |
[8] | Ning JIANG,Xiaodong XIE,Wei FAN,Yingjie XU. Data-driven optimization retrofit method with fixed topology structure for heat exchanger network [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4452-4460. |
[9] | Yunqing DONG, Zheng WANG, Yifan XU, Yanxia YANG, Xiaoping JIA, Fang WANG. Heat exchanger network bypass position determination based on complex network control theory [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3046-3055. |
[10] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
[11] | JIANG Ning, HAN Wenqiao, GUO Fengyuan, XU Yingjie. Optimization of heat exchanger network retrofit based on actual heat load distribution [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2935-2941. |
[12] | DENG Weidong, CUI Guomin, CHEN Jiaxing, ZHU Yushuang. Heat exchange network optimization by inverse gradient evolution strategy with penalty [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2500-2509. |
[13] | ZHANG Hongliang, CUI Guomin, ZHU Yushuang, HUANG Xiaohuang. Optimization and analysis of specific heat exchanger network cases [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1692-1701. |
[14] | XIAO Wu, SHI Zhaoxia, JIANG Xiaobin, LI Xiangcun, WU Xuemei, HE Gaohong, LUO Li. Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1267-1275. |
[15] | FENG Yuanli, XIA Li, XIANG Shuguang. Comparative study on heat exchanger network adaptability based on entropy analysis and entransy analysis [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3657-3664. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |