Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 772-778.DOI: 10.16085/j.issn.1000-6613.2018-0752
• Chemical processes and equipment • Previous Articles Next Articles
Feng LÜ1,2(),Yang ZHANG1,Caiyun MA2,Xuezhong WANG1,2(
)
Received:
2018-04-12
Revised:
2018-06-05
Online:
2019-02-05
Published:
2019-02-05
Contact:
Xuezhong WANG
通讯作者:
王学重
作者简介:
<named-content content-type="corresp-name">吕凤</named-content>(1986—),女,博士研究生,研究方向为喷雾干燥过程模拟。E-mail:<email>celvfeng@mail.scut.edu.cn</email>。|王学重,教授,博士生导师,研究方向为过程控制和三维成像。E-mial:<email>xzwang@leeds.ac.uk</email>。
基金资助:
CLC Number:
Feng LÜ, Yang ZHANG, Caiyun MA, Xuezhong WANG. Simulation and experimental study on the evolution of droplet size distribution during spray drying of mannitol[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 772-778.
吕凤, 张扬, 马才云, 王学重. 甘露醇喷雾干燥过程中液滴粒度分布变化的群体粒数衡算模拟和实验研究[J]. 化工进展, 2019, 38(02): 772-778.
工况 | 入口温度/℃ | 母液中甘露醇的质量分数/% | 雾化气体流量/L·min-1 | 出口温度/℃ | 产率/% | D 50/μm | 分布跨度 | 产品含湿量/% |
---|---|---|---|---|---|---|---|---|
A | 135 | 10 | 4.1 | 86 | 71.3 | 9.36 | 1.62 | 0.38 |
B | 135 | 10 | 5.95 | 85 | 84.4 | 7.24 | 1.39 | 1.22 |
C | 135 | 15 | 4.1 | 86 | 72.7 | 11.76 | 1.57 | 0.70 |
D | 135 | 15 | 5.95 | 85 | 80.2 | 8.01 | 1.44 | 0.74 |
工况 | 入口温度/℃ | 母液中甘露醇的质量分数/% | 雾化气体流量/L·min-1 | 出口温度/℃ | 产率/% | D 50/μm | 分布跨度 | 产品含湿量/% |
---|---|---|---|---|---|---|---|---|
A | 135 | 10 | 4.1 | 86 | 71.3 | 9.36 | 1.62 | 0.38 |
B | 135 | 10 | 5.95 | 85 | 84.4 | 7.24 | 1.39 | 1.22 |
C | 135 | 15 | 4.1 | 86 | 72.7 | 11.76 | 1.57 | 0.70 |
D | 135 | 15 | 5.95 | 85 | 80.2 | 8.01 | 1.44 | 0.74 |
样品 编号 | 实验值/μm | 实验值 分布跨度 | PBREA模拟值/μm | PBREA模拟值分布跨度 | REA模拟值 D 50/μm | PBREA模拟值/ 实验值 | REA D 50模拟值/实验值 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D 10 | D 50 | D 90 | D 10 | D 50 | D 90 | D 50 | 分布跨度 | |||||
A | 3 | 6 | 12 | 1.5 | 5.00 | 9.00 | 17.00 | 1.33 | 11.58 | 1.50 | 0.89 | 1.93 |
B | 2 | 5 | 12 | 1.3 | 5.00 | 7.00 | 11.00 | 0.86 | 8.86 | 1.40 | 0.66 | 1.77 |
C | 3 | 9 | 17 | 1.6 | 6.00 | 10.50 | 18.00 | 1.14 | 13.40 | 1.17 | 0.71 | 1.59 |
D | 3 | 7 | 12 | 2 | 3.50 | 7.00 | 12.00 | 1.21 | 8.30 | 1.00 | 0.61 | 1.19 |
样品 编号 | 实验值/μm | 实验值 分布跨度 | PBREA模拟值/μm | PBREA模拟值分布跨度 | REA模拟值 D 50/μm | PBREA模拟值/ 实验值 | REA D 50模拟值/实验值 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D 10 | D 50 | D 90 | D 10 | D 50 | D 90 | D 50 | 分布跨度 | |||||
A | 3 | 6 | 12 | 1.5 | 5.00 | 9.00 | 17.00 | 1.33 | 11.58 | 1.50 | 0.89 | 1.93 |
B | 2 | 5 | 12 | 1.3 | 5.00 | 7.00 | 11.00 | 0.86 | 8.86 | 1.40 | 0.66 | 1.77 |
C | 3 | 9 | 17 | 1.6 | 6.00 | 10.50 | 18.00 | 1.14 | 13.40 | 1.17 | 0.71 | 1.59 |
D | 3 | 7 | 12 | 2 | 3.50 | 7.00 | 12.00 | 1.21 | 8.30 | 1.00 | 0.61 | 1.19 |
初始液滴平均 直径/μm | 颗粒与液滴平均粒径的比值/% | ||
---|---|---|---|
实验值 | PBREA模拟值 | REA模拟值 | |
17 | 35.29 | 52.94 | 68.12 |
13 | 38.46 | 53.85 | 68.12 |
21 | 42.86 | 50.00 | 63.83 |
14 | 50.00 | 50.00 | 63.83 |
初始液滴平均 直径/μm | 颗粒与液滴平均粒径的比值/% | ||
---|---|---|---|
实验值 | PBREA模拟值 | REA模拟值 | |
17 | 35.29 | 52.94 | 68.12 |
13 | 38.46 | 53.85 | 68.12 |
21 | 42.86 | 50.00 | 63.83 |
14 | 50.00 | 50.00 | 63.83 |
A | —— | 液滴的表面积, m2 | |
---|---|---|---|
a 1, a 2, a 3 | —— | 拟合系数 | |
b | —— | REA模型中液滴粒径变化的系数 | |
| —— | 液滴的定压比热容, kJ/(kg·K) | |
D | —— | 液滴或颗粒直径, m | |
D 10 ,D 50 ,D 90 | —— | 累积粒度分布分别为10%, 50%和90%时对应的颗粒直径 | |
| —— | 扩散系数, | |
G | —— | 液滴或颗粒的萎缩速度,m/s | |
h | —— | 传热系数, | |
| —— | 传质系数, m/s | |
k | —— | 时间步长 | |
| —— | 热导率, | |
L | —— | 特征尺寸 | |
m | —— | 质量, kg | |
Pr | —— | 普朗特数 | |
Q | —— | 种群的密度函数 | |
R | —— | 气体常数 | |
Re | —— | 雷诺数 | |
T | —— | 温度, K | |
t | —— | 时间, s | |
X | —— | 液滴或颗粒的含湿量, kg水/kg固体 | |
z | —— | 尺寸步长 | |
ΔH | —— | 水的气化潜热, | |
ρ | —— | 密度, | |
| —— | 干燥过程中的活化能, J/mol | |
上、下角标 | |||
b | —— | 干燥气体 | |
c | —— | 平衡状态下的参数 | |
d | —— | 液滴 | |
s | —— | 表面 | |
sat | —— | 饱和状态下的参数 | |
t | —— | 时间 | |
v | —— | 蒸汽 | |
0 | —— | 初始状态下的数值 | |
L | —— | 特征尺寸 |
A | —— | 液滴的表面积, m2 | |
---|---|---|---|
a 1, a 2, a 3 | —— | 拟合系数 | |
b | —— | REA模型中液滴粒径变化的系数 | |
| —— | 液滴的定压比热容, kJ/(kg·K) | |
D | —— | 液滴或颗粒直径, m | |
D 10 ,D 50 ,D 90 | —— | 累积粒度分布分别为10%, 50%和90%时对应的颗粒直径 | |
| —— | 扩散系数, | |
G | —— | 液滴或颗粒的萎缩速度,m/s | |
h | —— | 传热系数, | |
| —— | 传质系数, m/s | |
k | —— | 时间步长 | |
| —— | 热导率, | |
L | —— | 特征尺寸 | |
m | —— | 质量, kg | |
Pr | —— | 普朗特数 | |
Q | —— | 种群的密度函数 | |
R | —— | 气体常数 | |
Re | —— | 雷诺数 | |
T | —— | 温度, K | |
t | —— | 时间, s | |
X | —— | 液滴或颗粒的含湿量, kg水/kg固体 | |
z | —— | 尺寸步长 | |
ΔH | —— | 水的气化潜热, | |
ρ | —— | 密度, | |
| —— | 干燥过程中的活化能, J/mol | |
上、下角标 | |||
b | —— | 干燥气体 | |
c | —— | 平衡状态下的参数 | |
d | —— | 液滴 | |
s | —— | 表面 | |
sat | —— | 饱和状态下的参数 | |
t | —— | 时间 | |
v | —— | 蒸汽 | |
0 | —— | 初始状态下的数值 | |
L | —— | 特征尺寸 |
1 | 赵志福, 朱宏吉, 于津津, 等 . 菊粉生产新技术研究进展[J]. 化工进展, 2008, 27(10): 1522-1532. |
ZHAO Zhifu , ZHU Hongji , YU Jinjin , et al .New technical progress of the manufacture of inulin[J]. Chemical Industry and Engineering Progress, 2008, 27(10): 1522-1532. | |
2 | 郭义, 胡建华, 杨梓剑, 等 . 核黄素结晶母液的处理及回收利用[J]. 化工进展, 2016, 35(11): 324-327. |
GUO Yi , HU Jianhua , YANG Zijian , et al .Treatment and recycling of riboflavin crystallization mother liquor[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 324-327. | |
3 | 张丽丽 . 冲击式气流喷雾雾化机理及干燥过程数值模拟的研究[D]. 济南: 山东大学, 2008. |
ZHANG L L .Study on atomization mechanism and numerical simulation of drying process of air-blast spray[D]. Jinan:Shandong University, 2008. | |
4 | WAWRZYNIAK P , JASKULSKI M , ZBICIŃSKI I , et al . CFD modelling of moisture evaporation in an industrial dispersed system[J].Advanced Powder Technology, 2017, 28(1): 167-176. |
5 | NANDIYANTO A B D , OKUYAMA K .Progress in developing spray-drying methods for the production of controlled morphology particles:from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology, 2011, 22(1): 1-19. |
6 | KEMP I C , WADLEY R , HARTWIG T , et al . Experimental study of spray drying and atomization with a two-fluid nozzle to produce inhalable particles[J]. Drying Technology, 2013, 31(8): 930-941. |
7 | ELVERSSON J , MILLQVIST FUREBY A , ALDERBORN G , et al .Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying[J]. Journal of Pharmaceutical Sciences, 2003, 92(4): 900-910. |
8 | ALI M, MAHMUD T , HEGGS P J , et al . A one-dimensional plug-flow model of a counter-current spray drying tower[J].Chemical Engineering Research and Design, 2014, 92(5): 826-841. |
9 | LIU J J , MA C Y, HU Y D , et al .Modelling protein crystallisation using morphological population balance models[J].Chemical Engineering Research and Design, 2010, 88(4): 437-446. |
10 | FALOLA A , BORISSOVA A , WANG X Z .Extended method of moment for general population balance models including size dependent growth rate, aggregation and breakage kernels[J].Computers & Chemical Engineering, 2013, 56(56): 1-11. |
11 | LANGRISH TAG , KOCKEL T K .The assessment of a characteristic drying curve for milk powder for use in computational fluid dynamics modelling[J]. Chemical Engineering Journal, 2001, 84(1): 69-74. |
12 | LIN S , CHEN X D . A model for drying of an aqueous lactose droplet using the reaction engineering approach[J]. Drying Technology, 2006, 24(11): 1329-1134. |
13 | WOO M W, DAUD W R W , MUJUMDAR A S , et al .Comparative study of droplet drying models for CFD modelling[J].Chemical Engineering Research and Design, 2008, 86(9): 1038-1048. |
14 | LIN S , CHEN X D .Changes in milk droplet diameter during drying under constant drying conditions investigated using the glass-filament method[J].Food & Bioproducts Processing, 2004, 82(3): 213-218. |
15 | HAR C L, FU N , CHAN E S , et al .Unraveling the droplet drying characteristics of crystallization prone mannitol – experiments and modeling[J].AIChE Journal, 2017, 63(6): 1839-1852. |
16 | WIJLHUIZEN A E , KERKHOF P J A M , BRUIN S .Theoretical study of the inactivation of phosphatase during spray drying of skim-milk[J].Chemical Engineering Science, 1979, 34(5): 651-660. |
17 | TOMINAGA T , MATSUMOTO S . Diffusion of polar and nonpolar molecules in water and ethanol[J]. Bulletin of the Chemical Society of Janpan, 2006, 63(2): 533-537. |
18 | FU N , WOO M W, SELOMULYA C , et al . Drying kinetics of skim milk with 50% initial solids[J]. Journal of Food Engineering, 2012, 109(4): 701-711. |
19 | LEVEQUE R J , MIHALAS D , DORFI E A , et al .Computational methods for astrophysical fluid flow[M]. Berlin: Springer, 1998: 71-90. |
20 | WANG W-N , PURWANTO A , LENGGORO I W , et al .Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis[J].Industrial & Engineering Chemistry Research, 2008, 47(5): 1650-1659. |
21 | 陈文武, 毕荣山, 刘振东, 等 . 气液喷射反应器内液滴粒径分布PLIF研究[J]. 化工进展, 2012, 31(4): 754-757. |
CHEN Wenwu , BI Rongshan , LIU Zhendong , et al . PILF study on droplet size distribution in gas-liquid jet reactor[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 754-757. | |
22 | 郭金海, 谭心舜, 毕荣山, 等 . 压力旋流喷嘴雾化滴径分布的模型预测和实验[J]. 化工进展, 2012, 31(3): 528-532. |
GUO Jinhai , TAN Xinshun , BI Rongshan , et al .Model prediction and experiment study on spray droplet size distribution of pressure swirl nozzle[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 528-532. | |
23 | KIEVIET F G . Modelling quality in spray drying[D]. Holland: Technische Universiteit Eindhoven, 1995. |
24 | WAWRZYNIAK P , ASKULSKI M , ZBICIŃSKI I , et al . CFD modelling of moisture evaporation in an industrial dispersed system[J]. Advanced Powder Technology, 2016, 28(1): 167-176. |
25 | ULLUM T , SLOTH J , BRASK A , et al .Predicting spray dryer deposits by CFD and an empirical drying model[J]. Drying Technology, 2010, 28(5): 723-729. |
[1] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[2] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[3] | SUN Yanchenhao, WANG Wei, LI Yizhe, ZHU Yanni, LIU Xuewu, ZHANG Dawei. Preparation of mandarin oil microcapsules and its product quality evaluation [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2626-2637. |
[4] | ZONG Yue, ZHANG Ruijun, GAO Shanshan, TIAN Jiayu. A review on the pressure-driven thin film composite (TFC) membranes with special stability for desalination [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2058-2067. |
[5] | WANG Guangyu, MENG Jinghui, ZHANG Kai. Simulation of intermittent microwave drying of coal slime and dielectric properties [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1779-1786. |
[6] | CHEN Erjun, ZHANG Yuling, LU Shaolei, DUAN Haiyang, JIN Wenzhang. Stability and physicochemical properties of air nanobubbles [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4673-4681. |
[7] | LIU Chang, LI Yubao, ZUO Yi, LI Jidong. Compare and analysis on different loading methods of hydroxyapatite loaded baicalin [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4995-5002. |
[8] | LI Juanjuan, ZHANG Tianyong, LI Xianggao. Construction of high-quality iron-manganese black nano-dispersion system for electrophoretic display [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3178-3185. |
[9] | ZHOU Yalan, YAN Wen, LUO Lu, FAN Mizi, DU Guanben, ZHAO Weigang. Recent development of phenolic carbon aerogels: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1970-1981. |
[10] | WU Chenhao, LI Kunfeng, LI Xiaohua, FEI Zhifang, ZHANG Zhen, YANG Zichun. Research progress on preparation of silica aerogels at ambient pressure drying [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 837-847. |
[11] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
[12] | ZHANG Shuang, ZHAO Lixin, LIU Yang, SONG Minhang, LIU Lin. Analysis of flow field distribution and separation characteristics of degassing and oil-removal hydrocyclone system [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 75-85. |
[13] | ZHAO Ning, FENG Yongxin, LIN Tingkun, XIE Zhiwen. Research progresses on evaporation characteristics of desulfurization wastewater droplets in high-temperature flue gas [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4508-4514. |
[14] | WANG Jing, WU Weidong, WANG Hao, LI Zhenbo, LIU Hui. Effects of cooling water flow rate of auxiliary condenser on performance of closed heat pump drying system [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1307-1314. |
[15] | Aiyuan MA, Xuemei ZHENG, Jie YUAN. Experimental study on the microwave drying of neutralization iron slag from zinc hydrometallurgy [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1077-1084. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 347
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |